This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3093246, IEEE

Transactions on Software Engineering

Assisting Example-based API Misuse Detection
via Complementary Artificial Examples

Maxime Lamothe, Member, IEEE, Heng Li, Member, IEEE, and Weiyi Shang, Senior Member, IEEE

Abstract—Application Programming Interfaces (APIs) allow their users
to reuse existing software functionality without implementing it by them-
selves. However, using external functionality can come at a cost. Be-
cause developers are decoupled from the API's inner workings, they
face the possibility of misunderstanding, and therefore misusing APlIs.
Prior research has proposed state-of-the-art example-based APl misuse
detectors that rely on existing APl usage examples mined from existing
code bases. Intuitively, without a varied dataset of AP| usage examples,
it is challenging for the example-based API misuse detectors to differ-
entiate between infrequent but correct APl usages and APl misuses.
Such mistakes lead to false positives in the API misuse detection results,
which was reported in a recent study as a major limitation of the state-
of-the-art. To tackle this challenge, in this paper, we first undertake
a qualitative study of 384 falsely detected API misuses. We find that
around one third of the false-positives are due to missing alternative
correct APl usage examples. Based on the knowledge gained from
the qualitative study, we uncover five patterns which can be followed
to generate artificial examples for complementing existing API usage
examples in the API misuse detection.

To evaluate the usefulness of the generated artificial examples, we
apply a state-of-the-art example-based API misuse detector on 50 open
source Java projects. We find that our artificial examples can comple-
ment the existing API usage examples by preventing the detection of 55
false APl misuses. Furthermore, we conduct a pre-designed experiment
in an automated API misuse detection benchmark (MUBench), in order
to evaluate the impact of generated artificial examples on recall. We find
that the API misuse detector covers the same true positive results with
and without the artificial example, i.e., obtains the same recall of 94.7%.
Our findings highlight the potential of improving API misuse detection by
pattern-guided source code transformation techniques.

Index Terms—API-misuse detection, Mining Software Repositories,
Empirical Software Engineering, Software reuse

1 INTRODUCTION

Application Programming Interfaces (APIs) offer software
developers the means to interact with Software Develop-
ment Kits, libraries, operating systems, frameworks, and
cloud services [1]-[4]. Through their usage, software de-
velopers can simplify their work and concentrate on their
novel ideas while relying on existing software to reduce the
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overhead of re-inventing functionality that already exists [5],
[6]. However, using APIs is not free of issues or pitfalls.
Because developers are decoupled from the inner workings
of the APIs they use, they can misunderstand them and
potentially misuse them [7], [8]. API misuses are defined
as violations of the implicit usage constraints of an API [9].
Indeed, these API violations can lead to software crashes
and introduce vulnerabilities.

Due to their ubiquity, determining how APIs are being
used and misused is an important task in software develop-
ment [10]-[13]. Indeed, prior research has investigated the
usability of APIs to uncover how to improve API usability
for API users [14]-[17]. However, even with the existence
of various studies and tools to improve API usability [18]-
[21], APIs still suffer from misuses [7]. Because APIs provide
interfaces to existing functionality, such interfaces can obfus-
cate information and make it difficult for users to determine
the correct way to invoke the underlying functionality when
using an API [8], [22]. While API recommendation tools
attempt to provide a prescriptive way to address the misuse
problem, they cannot address cases where a misuse already
exists in a code base. API misuse detectors have therefore
been created to uncover cases where APIs were used in
potentially incorrect ways [7].

API misuse detectors, particularly those that employ API
usage examples to uncover potential misuses [7], are at the
mercy of their sample sizes. A lack of usage examples was
recently reported as one of the biggest challenges in API
misuse detection [7]. In particular, uncommon API usages
and alternative correct API usages have been found to make
up 53.5% of false positive misuses [7]. An obvious and naive
solution to reduce the incidence false positives is to have a
greater diversity of correct API usages examples. Mining
more correct examples is a time consuming, dataset depen-
dent task that does not guarantee the quality of the mined
examples. However, example mining can be automated and
in the right circumstances it can indeed reduce the incidence
of false positive misuses. To achieve this goal, recent API
misuse detectors, such as MuDetect, mine multiple projects
to collect API usage examples [9], however the resulting
false positive rate still has room for improvement [23].

In this paper, we examine the challenge of missing
correct API usage examples from a different perspective.
Instead of mining source code from more projects to obtain
more API usage examples, we propose to generate artificial
examples based on the existing correct API usage examples.
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Fig. 1. An overview of our study setup, data collection, and experiments

In this paper, we refer to these artificially generated, se-
mantically and syntactically correct, examples as alternative
correct API usages. We refer to incorrect API usage examples
as API misuses, and correct API usage examples as API
usage examples. The overview of our study is shown in
Figure 1. We first undertake a qualitative study of API
misuses that are identified by a state-of-the-art API misuse
detector MuDetect on 818 open source projects. Through
our study, we aim to discover patterns of opportunities
where adding more alternative correct API usages may
reduce the false positive detection of API misuses. In total,
we identify five patterns that can be followed to generate
artificial API usage examples. Such artificial examples can
be used to complement the existing API usage examples
used in API misuse detection. While the study was indeed
conducted using MuDetect, our examples can be used on
other example-based misuse detection approaches. Finally,
the use of our alternate examples is light-weight and does
not require the complete compilation of an application to
obtain bytecode or machine code analysis, and it is thus
also more explainable to developers.

We evaluate the usefulness of these artificial examples
using projects from another set of 50 open source projects
and the MUBench dataset. Our evaluation results show
that all five of our patterns are applicable in transforming
the existing API usage examples into the artificial ones.
More importantly, by using the generated artificial exam-
ples to complement the existing ones, we can eliminate 55
false-positives from the API misuse detection. In addition,
through a pre-designed experiment in MUBench, we find
that the artificial examples do not reduce true API misuse
detection by the API misuse detector, i.e., the recall remains
at 94.7%. The contributions of this paper are:

o This paper tackles the challenge of missing correct
API usage examples from a different direction from
prior research.

Through a qualitative study, we identify five patterns
of alternative correct API usages which can be used

to generate artificial API usage examples.
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The artificial API usage examples can complement
existing API usage examples to reduce the false
positive detection of API misuses while keeping all
true positives.

Our findings highlight the potential of generalizing

correct and incorrect API usages based on pattern-guided
source code transformations. While our evaluation uses
MuDetect, other API misuse tools also rely on examples
to detect API misuses. Our examples could also help these
detectors. We simply evaluate our approach using MuDetect
because it is the current state-of-the-art approach.
Paper organization. Section 2 presents the background of
example-based API misuse detection and a motivating ex-
ample for our study. Section 3 presents our qualitative study
on the false positive examples in API misuse detection.
Section 4 presents the five patterns that can be used to gen-
erate artificial examples in order to complement the existing
ones. Section 5 evaluates the usefulness of the generated
complementary artificial examples. Section 6 discusses the
threats to validity. Section 7 presents related work of this
paper. Finally, Section 8 concludes the paper.

2 BACKGROUND AND A MOTIVATING EXAMPLE

In this section, we present the background of our study as
well as an example to motivate our study.

2.1 Background: Example-based APl misuse detection

Studies have demonstrated the advantages of example-
based static misuse detection [7], [24]. While rule-based or
constraint-based API misuse detection requires the existence
of vetted knowledge of an API to codify usage rules that can
then be used to detect misuses, example-based detectors can
rely on existing API usages to extract the knowledge needed
for their detection [1], [7], [24].

However, because example-based static API-misuse de-
tectors, such as MuDetect [9], extract real usages of APIs
to use as examples of API usages, they are dependent on
their sample of examples. In a systematic evaluation of static
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API-misuse detectors, it was determined that over 53.5% of
false positives of misuse detectors are due to uncommon or
alternative correct ways to use an API [7]. This occurs even
in cases where API-misuse detectors are trained in a cross-
project setting which provides more examples [9].

MuDetect is the state-of-the-art in example-based API-
misuse detection, by default, it uses a minimum-pattern-
support to allow examples with a minimum number of ex-
amples to qualify as potential API usage examples. Potential
API usage examples are greedily explored and clustered
according to isomorphic pattern candidate extensions [9].
While clustering and extending example candidates, code
semantics are also observed, in a graph form, for data
and control nodes that could have side-effects or are oddly
linked to the API example (e.g., only linked because of usage
order, but not actually linked through any control action).
Only if all nodes successfully pass through its heuristics
does MuDetect consider a potential API usage example.
These heuristics were designed in an attempt to prevent
flagging uncommon usages as misuses [9]. In spite of these
safeguards, false positive detection still occurs [9].

False positives are particularly hurtful to API misuse
detectors by causing an over-reporting of misuses, which
in-turn can overwhelm the users of these misuse detectors.
Based on the 33.0% precision of state-of-the-art approaches
such as MuDetect [9], it can be understood that example-
based static API-misuse detectors can stand to benefit from
new ways to augment their sample of API usage examples.

2.2 A Motivating example

Prior research suggests that a majority of false positive API
misuse detection is due to a lack of less frequent API usage
examples [7]. However, little is known about the nature
of less frequent API usage examples. By observing falsely
detected API misuses perhaps it is possible to determine
some patterns of less frequent API usages and find new
ways to help reduce the mistakes in API misuse detection.
For example, in Figure 2 we can see an example of a falsely
detected API misuse and the API usage example that was
used for its detection. Based on the example presented, we
can see that the API misuse detector falsely detects that it
is a mistake to have the put API method in the if block
rather than have it in a missing else block as it is in the API
usage example used for detection. The API misuse detection
tool does not recognize that the conditional statement that
determined whether the key is already contained in the map
has been inverted in the wrongly detected API misuse.
This lack of knowledge stems from a lack of varied
API usage examples. Indeed, other API misuse detection
approaches have attempted to make use of API usage
rules obtained from API documentation to circumvent this
problem [1]. However, these approaches have not shown
a vastly superior ability to detect API misuses, and they
suffer from other pitfalls such as their requirement for high
quality and up-to-date documentation. Current state-of-the-
art static detection approaches attempt to remedy this prob-
lem by mining API usage examples from large inter-project
data sources [9]. However, although this does improve the
performance of API misuse detectors, the problem persists.
If we can identify patterns within API usage examples that
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are prone to causing false positive API misuse detection,
these patterns can potentially be used to generate comple-
mentary examples. These complementary examples, based
on the patterns of real examples, could patch knowledge
gaps without needing extensive source code searches to find
all possible API usages. For example, to address the issue in
Figure 2, if a complementary example existed in which the
put method call was located in an if statement with inverted
logic, i.e., lcontainsKey(), the API usage shown in Figure 2(a)
would not be falsely detected. In this case the inverted logic
is not the cause of the faulty misuse detection, but rather
a way to obtain a different control logic while maintaining
equivalent and correct functionality. While this could be a
particularity of MuDetect, our examples would also cover
situations where the inverted logic could be the case of a
faulty misuse detection, as well as cases where the fault is
due to the control logic.

Therefore, in the next section we conduct a qualitative
study in an effort to uncover patterns of missing API usage
examples.

3 QUALITATIVE STUDY ON MissSING APl USAGE
EXAMPLES

In this section, we first conduct a qualitative study to gain
understanding of the missing correct API usage examples.

3.1

Although work has been done to determine the caveats
and problems with existing misuse detection techniques,
work remains to be done to determine strategies to han-
dle infrequent API usages and alternative usages for the
same API [7]. We therefore seek to systematically determine
patterns of alternative API usages and how to leverage
them to reduce false-positives in API misuse detection. We
first present the projects and tools used to conduct our
preliminary study.

Subject projects. We use a readily available dataset [10]
from a recent API research work that includes 3,099 Java
projects available on Github. Although the dataset was
originally assembled to study five open-source Java APIs
(Guava, Hibernate-orm, Jackson, JUnit, and Log4j), the
projects in this dataset are not limited to using only these
five APIs and therefore present a rich source of varied API
usage. Note that, we intentionally do not select an existing
API misuse dataset (like MUBench) for this qualitative study
in order to avoid the bias (positive or negative) of existing
knowledge in the benchmarks of API usage examples.

To conduct our experiments, we selected a sub-sample of
1,000 projects, randomly selected from the original sample.
Of these 1,000 projects we discovered that 132 of them were
incompatible with MuDetect due to compilation errors in
the projects. Our final sample size was therefore 868 projects.
We reserved 50 of those projects for our final evaluation
and the rest was used for our manual study. The names
and download links for the projects used for this study, as
well as the results of our experiments can be found in our
replication package'.

Qualitative study setup

1. https:/ /figshare.com/s/337e35{63c41251e20cb
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public void fieldEofResponse(byte[] header, List<byte[]> fields, byte[] eof) {
/... extra code was removed for brevity
Map<String, ColMeta> columTolndx = new HashMap<String, ColMeta>(fieldCount);
for (inti =0, len = fieldCount; i < len; ++i) {
________ /... fieldName instantiation was removed for brevity
i if (columTolndx != null && [icolumTolndx.containsKey(fieldName)) {
//... extra code was removed for brevity
columTolndx.put(fieldName, colMeta);

(a) An API usage falsely detected as an API misuse

Fig. 2. An example of a falsely detected API misuse.

API misuse detection. In order to study the cases where
valid API examples are missing, we use an automated
tool to detect API misuses, and further examine the false
positives in the detection results. We opt to use MuDe-
tect [9] as an API misuse detector because it is a vetted
API misuse detector that has shown state-of-the-art results.
More importantly, MuDetect has the ability to uncover API
usage examples against which it can measure potential API
misuses [9]. This automatic mining of frequent API usage
examples allows us to leverage the large scale of open-
source repositories to mine usage examples from a wide
variety of APIs and obtain varied samples of examples of
API usages that could be qualified as odd or misused.

We ran MuDetect in its intra-project mode. We did not
opt for its inter-project mode because running the inter-
project mode on a sample of 818 projects is prohibitively
time consuming due to the explosion of misuse patterns that
occurs. Furthermore, using the intra-project mode allows us
to obtain a “worst-case” real usage scenario which serves
our goal of studying missing API usage examples.

MuDetect uses multiple heuristics to identify frequent
API usages. The first heuristic is based on the frequency
of API usage patterns. MuDetect has a minimum-pattern-
support variable which allows any API with more usages
than the set threshold to qualify as a potential API usage
pattern. For the automatic extraction of API usage exam-
ples used in our qualitative study, we set the minimum-
pattern-support to its default value to allow patterns with a
minimum number of examples to qualify as potential API
usage patterns. We used this value because it was success-
fully used in the MUBench dataset for its evaluation [9].
Furthermore, a lower threshold would allow for more false
positive API usage patterns and increase the already non-
trivial detection time.

MubDetect saves API call information on a per-misuse
basis. The location (i.e., file, line number, calling method) of
API misuses as well as the locations of API usage examples
used for detection are recorded as part of the MuDetect tool
process. We were therefore able to use this information to
manually observe real instances of potential misuses.

3.2 Qualitative study process

In total, we obtain 206,302 potential API misuses. To un-
derstand the API misuses that are detected due to the lack
of API usage examples, three authors of this paper acted
as reviewers and conducted a manual study on a statistical
sample of 384 detected API misuses (with 95% confidence
level and 5% confidence interval). The overall approach
used was based on prior works [25], [26]. Our final goal
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public void pattern(Map<String, Object> m, String key, Object value) {
... extra code was removed for brevity
if (m.containsKey(key)) {

} else”{'

m.hlljt(key, value);

B
(b) The API usage example used for API misuse detection

for the quantitative study is to uncover patterns of missing
API usage examples that cause false positive API misuse
detection. In this step, we first study the false positives in the
detection results to identify the ones that may be caused by
missing API usage examples. For each detected API misuse,
the reviewers also observe five API usage examples that
were leveraged by MuDetect to detect it. The five API usage
examples can help the reviewers understand why an API
misuse was detected. The manual study includes four steps.
Step 1. We first start by manually examining a sample of
174 detected API misuses. Each misuse was examined and
categorized by two of the three reviewers. Therefore, each of
the three reviewers was given 116 random potential misuses
(i.e., 2/3 of the 174 detected misuses) to categorize as they
saw fit (i.e., with open card sorting). This allowed each
reviewer to examine 30% of the total dataset.

Step 2. Once the 174 misuses were categorized, the three
reviewers discussed their categories and settled on a base
classification schema. Only the classification schema is dis-
cussed at this stage, no misuse classifications are compared.
Step 3. Using the newly agreed schema, all reviewers reex-
amined their categorization results and relabel as required
by the agreed schema categories. Once all of the 174 detected
API misuses were classified according to the same schema,
we measured the agreement ratio using Krippendorff’s
o [27]-[29]. The calculated agreement ratio was 0.744, i.e.,
a substantial agreement for consensus. Afterwards, all the
three reviewers discuss the cases of disagreement, until final
categorization of the 174 misuses were made.

Step 4. Due to the substantial agreement ratio achieved
in the last step, a further sample of 210 misuses (for a
total of 384 categorized potential misuses) was therefore
manually classified by three reviewers without the need of
overlapping, unless necessary (e.g., if an author felt unsure
about the classification). Whenever a reviewer believed that
a new category was identified during this step, all three
reviewers discussed the particular case/API usage. The
reviewers found that the codes established in Step 2. were
stable during this round.

3.3 Qualitative study results

After the four steps, we put the 384 detected API misuses
into a total of four categories.

Alternative correct usage: (108 instances) This category is
used to describe API usages that are similar to the ones in
the API usage examples that were used for detection. How-
ever, although similar, these falsely detected API usages use
some alternative means of working with the API that could
potentially have been detected by an API usage example
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complementary to the ones used for detection. API usages
categorized in this category are used for further inquiry into
potential transformation patterns to create complementary
artificial examples.

Different usage scenarios: (155 instances) This category is
used to describe API usages that were used in different sce-
narios. Contrarily to usages categorized as alternative correct
usages, we could not identify how these usages could have
been detected with complementary API usage examples,
because these APIs are used to service different purposes.
Therefore, these API usages require completely different
API usage examples to the existing ones.

Correct misuse: (13 instances) Some of the examples that
were selected for manual review were correctly identified
by MuDetect as misuses, therefore we categorized these
examples as such.

Not sure: (108 instances) If the reviewers could not agree
on why an API usage was targeted as an API misuse by
MuDetect or whether the API usage was a misuse or a
special domain specific use case, we categorized the API
usage as “Not sure”. While the authors could likely classify
all of these if pressed to do so, because there is an element of
uncertainty, we err on the side of caution. This conservative
sorting allows us to be more certain of our alternative correct
usage classifications.

3.4 Summary of the qualitative study results.

Around one third of the overall results of our qualitative
study are “alternative correct usages”. These manually
identified alternate API usages that were falsely identified
as APl misuses present opportunities for us to identify
which alternate correct usages cause confusion in API mis-
use detection. The found prevalence of alternative correct
usages provides an opportunity to identify general patterns
of alternative correct API usages. Through these general
patterns we can transform the existing frequent API usage
examples into less frequent alternative correct examples,
in order to address the challenging of missing API usage
examples. Such examples would later help reduce the rate at
which those API usages are falsely detected as API misuses.

4 PATTERNS OF COMPLEMENTARY ARTIFICIAL
EXAMPLES

Section 3 shows that a considerable amount of API misuse
detection results are actually due to missing correct API
usage examples that represent the alternative correct usages
of an APIL If more usage examples of these correct API
usages were available, they may significantly reduce the
false positives in API misuse detection.

We aim to produce transformation patterns that could
take real mined API usage examples as input (e.g., like those
mined by API misuse detection approaches like MuDetect).
These transformation patterns could then output alternative
correct API usages that could be used to uncover API
misuses with fewer false positives.

Therefore, in this section, all authors of this paper to-
gether discuss each API misuse detection results that were
classified as “alternative correct usage” in the qualitative
study (cf. Section 3), in order to uncover patterns of the
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needed complementary examples that can be used to reduce
the false positive detection results. From the 108 “alternative
correct usages”, we identify 46 Pipelines cases, 9 Alternative
iterators cases, 3 Complementary imports cases, 15 Inverted con-
ditions cases, 35 Intermediates cases. For each of the patterns,
the authors further discuss whether an artificial example can
be automatically generated based on transforming existing
API usage examples. The discovered pattern can later be
used to generate artificial API usage examples in order to
complement the existing examples to identify correct API
usages and reduce falsely detected misuses. In total, we
discover five such patterns.

In the rest of this section, we discuss each of our five
manually identified patterns in the following template:

Description: Description to the pattern of complemen-
tary API usage examples.

Example: Discussion of a concrete example that is pre-
sented in Figures 3-7.

Detection strategy: Our strategy to detect possible API
usage example candidates for the pattern.

Transformation approach: Our approach to generating
artificial API usage examples based on the transformation
of an existing API usage example.

Pattern 1: Pipelines.

public class Pipelines {

ipublicvoidexample(){ ~ T 1
1 StringBuilder sb=new StringBuilder("Hello");

{sb.append(" ),

sh.append(“World!"); :

E System.out.printIn(sh.toString());

U

public void complementaryExample() {
StringBuilder sb= new StringBuilder("Hello");
sh.append(" ") .append("World!");
System.out.printIn(sh.toString());

Fig. 3. Pattern 1: Pipelines

Description. This pattern is built primarily around APIs
that can be used in stages on the same object, also known as
the pipeline pattern [30]. Using the pipeline pattern requires
that an API method return the same object type as the call-
ing object type. This pattern is particularly useful because
developers sometimes pipeline a few API call stages, and
sometimes they use individual stages, one at a time.

Example. As shown in the example in Figure 3, a string
builder can be used to append new string to the end of
an existing string. Intuitively, the string builder can call
the API method append multiple times, separately, in order
to append different strings to its end. On the other hand,
the API method append returns a reference to the origi-
nal string builder to enable the method to be called in a
pipeline. Hence, as shown in our example, it is semantically
equivalent to either call append twice in separate, or in a
pipeline. Therefore, it is possible to artificially generate a
complementary API usage example, if such an AP is called
repetitively either separately or in a pipeline.

We would like to mention that the number of strings that
can be appended is not defined ahead of time, and therefore
cannot be inferred. In our example only two strings (” 7, and
“"World!” ) are being appended for brevity. However, one
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could append many more, or none at all, while still being a
correct API usage. However, because we cannot produce all
possible numbers that an API is repetitively called, in this
study we opt to only generate the complementary example
with the same number of calls. However, our approach can
easily be adjusted to any threshold number of calls.

Applying Algorithm 1 on the example in Fig. 3 would
find that sb.append ("World!") could be the child of
sb.append (" ").The two would then be joined as shown
in Fig. 3.

Detection strategy. The Pipelines pattern requires an API
that is called on, and returns, the same object. This can
be ascertained via abstract syntax tree (AST) analysis with
source bindings or through inference if a collapsed form
pipeline is available (e.g., the sb.append(””).append(”World!”);
in the complementaryExample() method in Figure 3. How-
ever, there are exceptions to this rule, for example Java
Streams present a pipeline like pattern, but they cannot be
broken up into different stages. Java Streams stages must
be done in a single pipeline, otherwise a new Stream must
be created [31]. A simplified algorithm for detection and
transformation can be found in Algorithm 1.

Algorithm 1: Searching and transforming pipelines.

Input : Correct API example code apiEx
Output: Complementary artificial example
1 foreach apiCall in apiEx do
2 | if apiCall.isChildofOtherAPICall() &&
apiCall.isNotStream() then

3 | apiCall separateCallAndChild

4 else if apiCall.CouldBeChildofOtherAPICall() then
5 | apiCall joinCallAndChild

6 end

However, in some cases it might not be possible to
fully collapse the stages of otherwise pipeline-able code.
For instance, in our example of Pattern 1 in Figure 3,
the string “World!” was assigned dynamically after having
started the StringBuilder (e.g., by requesting user input).
In that case, we would have to determine if the dynamic
assignment could be moved outside of the pipeline pattern.
In cases where intermediate instantiating of variables oc-
curs between otherwise pipeline-able API calls, we must
determine if moving those intermediate variables would
break the original method and only transform code if it
would not break. This analysis can be done by using control-
flow and data-flow analysis. However, even in cases of un-
movable intermediate variables, if there are many pipeline-
able stages, it might still be possible to partially collapse
some safe stages (e.g., all stages before an intermediate
variable appears), which can be done to produce a possible
complementary correct usage. In this study we only handle
safe cases, and collapse the calls to the first occurrence of
the original call.

Transformation approach. Starting from the top method
(i-e., example()) in Figure 3, the stages of the pipeline can be
collapsed after the first API call (in this case .append(“”)).
Because the pipeline stages could be considered as a single
statement, semi-colons must be adjusted accordingly. The
reverse is also possible. It is possible to transform the
pipeline form presented in complementaryExample() into its
non-collapsed version in example(). This can be done by
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determining the return type of a pipeline stage (in this
case .append(””)). If the return type matches the type of
the original object (in this case StringBuilder), then we can
separate the stage by calling it on the original object in a
new statement (semi-colons must be adjusted). Note that the
original order should be preserved. Furthermore, although
the example in this paper presents the same number of calls
(i.e., twice) as the detected example, the pattern could be
used to generate different numbers of calls when possible
(e.g., break up the example string differently) or indeed no
calls at all (e.g., the StringBuilder in our example would
contain the whole string, no appends would be called).
Pattern 2: Alternative iterators.

public class Alternativelterators {

1public void example() { 1
1 Collection<lInvokedMethod> invokedMethods = suite.getAllInvokedMethods(); E
; for (IInvokedMethod iim : invokedMethods) { H
1| 1TestNGMethod tm = iim.getTestMethod(); 1
E /l do something with tm E

Collection<lInvokedMethod> invokedMethods = suite.getAllInvokedMethods();
Iterator<lInvokedMethod> i = invokedMethods.iterator();
while (i.hasNext()) {
1TestNGMethod tm = i.next().getTestMethod();
/I do something with tm

Fig. 4. Pattern 2: Alternative iterators

Description. This pattern arises from the different con-
trol flows and data flows that are induced by different loops
that are allowed for a programming language (e.g., Java in
our study). During our manual study we noticed that some
examples of API usages were being falsely identified as API
misuses because their control-flow was directed by different
types of loops (e.g., for loop, while loop and foreach loop). We
are particularly interested in loops that can be transformed
into other types without changing the overall behavior of
the program, or the API call under inspection.

Example. Figure 4 presents an example of a for loop
that was transformed into an equivalent while loop using
an iterator. In this example, the getTestMethod() API call can
still be used to obtain the same effect. However, the syntax
of the context of the API call has changed and the overall
control and data flow of the API call is affected. Anecdotally
different programmers appear to have different preferences
for using different types of loops. Perhaps the legibility
of code differs for developers based on their proficiency
with various loops. The overall reasons why developers
chose certain loops does not matter. However, the fact that
different developers can use different loops to achieve the
same effect is important. Developers seldom work alone on
software projects, and therefore it is possible for different
types of loops to appear with the same API call. If one type
of loop is not frequent enough, it may be mistaken as a
misuse when compared to examples with other loop types.

Applying Algorithm 2 on the example in Fig. 4 would
find the ForEach loop, identify that all bindings are indeed
recoverable and then create an iterator before the loop as
shown in Fig. 4. The ForEach loop would be changed to a
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While loop, the iterator would be used with hasNext, and a
new variable (e.g., the result of 1 . next () ) would be created
to use in the place of the original variable (e.g., 1im).

Algorithm 2: Searching and transforming iterators.

Input : Correct API example code apiEx

Output: Complementary artificial example

/* Only shows one kind for brevity*/

iteratorStatements < apiEx.getlS()

foreach iS in iteratorStatements do

if 1.S.isForeachLoop() &&
1S.allBindingsRecoverable() then

instantiate N ewIterator Be foreLoop()
1S.changeToWhileLoop()
1S.changelterParameterTo(hasN ext)
1S transformlIterVarsTo(next())

=W N -

© ® 9 o w

end

Detection strategy. The Alternative iterators pattern re-
quires that an API call be affected by a loop (either by data
or control-flow). If an API call is inside a loop but is not
affected by the loop, it should be possible to construct a
sub-graph of the usage that can cover any loop scenario [7].
In such cases, the loop itself does not impact the correctness
of the API call. Furthermore, for us to produce a transforma-
tion it should be possible to transform a loop into another
type only by referring to method calls for which we can
infer all bindings. If an example requires code modification
outside of inferable bindings, we do not attempt the trans-
formation to limit the introduction of defects. A simplified
algorithm for detection and transformation can be found in
Algorithm 2.

Transformation approach. As shown in the pattern in
Figure 4, we can easily transform a foreach Java loop into
a while loop by introducing an intermediate iterator and
the hasNext and next methods on this iterator. The same
can be achieved in reverse. Similarly, it is also possible to
transform a standard Java for loop into either of these types
with the introduction of some intermediate variables that
can be inferred from bindings in the existing code example.
If we cannot infer all bindings, we do not attempt the
transformation.

Pattern 3: Complementary imports.

import org.junit.Assert;
import static org.junit.Assert.assertNotNull;

C

Imports are interchangeable
(code changes needed)

@Test
public class Complementarylmports {

Fig. 5. Pattern 3: Complementary imports

Description. In our manual study, we uncovered cases
where developers had imported static API methods and
used them directly. In other cases, the same API was stat-
ically called from the owner class.

7

Example. This can be seen in Pattern 3 in Figure 5 where
the assertNotNull API call occurs in both example methods.
However, one of them is called explicitly by the Assert class;
while the other one relies on the import statement. This
example is simplified to show both imports in the same file,
however this is not the case when we create our patterns.
In cases like this, we actually create a copy of the original
file and change the imports in that file instead. We then
feed both of the example files to the misuse detector and
force the detector to use both versions when it attempts to
find a misuse that uses either file. If one of these usages
is missing from the examples, it is possible to mistake the
missing one as a misuse. Better type inference using partial
program analysis could allow the resolution of this specific
pattern. However, because partial program analysis can be
computationally intensive, we believe that there is value
added in computing examples ahead of time and using
them as a quick lookup when the need arises. Overall,
using complementary imports should allow tool makers
to ‘front-load” some of the computing requirements and
therefore speed up the overall detection while reducing
false-positives.

Applying Algorithm 3 on the example in Fig. 5
would  identify = Assert.assertNotNull as a
static method «call. This method would then be
modified to assertNotNull, and the static import
org.junit.Assert.assertNotNull would be added
to replace the non-static version as shown in Fig. 5.

Detection strategy. To detect this pattern, an API
call must use a static method. Furthermore, it should
be possible to import this static method independently
from the class itself, as shown in the import static
org.junit.Assert.assertNotNull statement in the pattern of Fig-
ure 5. In-depth binding analysis could be used to detect this
pattern. However, in-depth binding analysis is computa-
tionally expensive and could slow down already non-trivial
API misuse detection times if done for every occurrence.
To address this, we use a heuristic based on typical Java
naming convention where the name of a class should start
with a capital letter. Therefore, we can obtain a list of
imported static method calls in the import statements and
the calls to the static method calls in the source code.
Although this pattern could be integrated directly into the
API misuse detection approach, it is much more efficient to
use this pattern for API usage examples, where the binding
information only needs to be checked once for one API
usage example, rather than for each potential API misuse.
A simplified algorithm for detection and transformation can
be found in Algorithm 3.

Transformation approach. As shown in the method the
pattern of Figure 5, the Assert. class call in the example
method can be removed as shown in the complementaryEx-
ample method. The corresponding static import to the target
API method must be determined and added to allow the
new syntax. The reverse is also possible. If a static method
import is in use with a direct import, the corresponding
import to the target class must be determined and added,
and the static method must be modified to be called on the
imported class.

Pattern 4: Inverted conditions.
Description. Similarly to our Alternative iterators pattern,
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Algorithm 3: Searching and transforming imports.

Input : Correct API example code apiEx
Output: Complementary artificial example
1 foreach apiCall in apiEx do
if apiCall.fromStaticMethod() then
if apiCall.notImported AsStatic() then
apiCall.changelmportToStatic()
apiCall.changeCallSyntaxForStaticMethod()
else
apiCall.changelmportFromStatic()
apiCall.changeCallSyntaxNonStaticMethod ()

2
3
4
5
6
7
8
9

end

public class InvertedConditions {
i public void example(Map<String, Object> m, String key, Objectvalue) {
E if (m.containsKey(key)) {
/I key was set before
i Yelse {

' /I key was not set before H

m.put(key, value);

i public void complementaryExample(Map<String, Object> m, String key, Object val) {:
if (Im.containsKey(key)) {// condition is inverted (1) 1
/1 key was not set before E
m.put(key, value); !
Yelse { i
Il'key was set before !

Fig. 6. Pattern 4: Inverted conditions

different developers appear to use different orders for their
conditional statements. Although good practices [32] sug-
gest using logic and naming conventions that make sense
with respect to chosen names and reduce the number of
double negatives (e.g., /doesNotContain instead of contains),
it is still possible for situations to arise where two (or more)
equivalent correct code expressions exist.

Example. In the pattern example in Figure 6, we present
a simplified example of this pattern. In this example we
can see that reversing the logic inside the conditional if
statement changes the logic of the overall method. The
put API call is therefore moved from the if block to the
else block when the condition is inverted. As shown in
the example, this pattern can work in either direction.
Applying Algorithm 4 to the example in Fig. 6 would
find if (m.containsKey (key)), identify that no else
if condition exists, and proceed to invert the condition to
obtain !m.containsKey (key), and then invert the code
blocks inside the respective condition blocks as shown in
Fig. 6.

Detection Strategy. First, this pattern requires the use
of a conditional statement (if statement) to gatekeep API
usage. In the pattern of Figure 6 this API call is the
put method. Currently we only consider cases with single
if /else statements, we do not apply the pattern if any else
if statements are involved. Afterwards, we investigate the
possibility of switching the order of conditional statements.
Similarly to Pattern 3, it is less computationally expensive to
determine an equivalent loop once for a known API usage
example to create a complementary usage example, than it
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is to determine the equivalence of every loop analyzed by
an API misuse detector. A simplified algorithm for detection
and transformation can be found in Algorithm 4.

Algorithm 4: Searching and transforming condi-
tions.
Input : Correct API example code apiEx
Output: Complementary artificial example
conditional Statements < api Ex.getCS()
foreach C'S in conditionalStatements do
if C'S.doesNotHaveElself() then
C'S.invertCondition()
CS.invertlf AndElseCodeBlocks()
end

DN ul R W N =

We have also observed cases where a complementary
example could be produced by exchanging an if/else state-
ment with a try/catch clause. However, it was not readily
apparent how this particular version of the pattern could be
generalized safely, while remaining certain that we would
not introduce undesirable side-effects. However, we present
this strategy here because we did find instances of these
false positive API misuse identification in our manual study.

Transformation approach. The pattern first requires the
inversion of the conditional logic in an if statement. After
the conditional logic has been inverted, the functionality
that was originally in the if block can be transferred to the
else block, and vise-versa. If multiple conditions are present
in the if statement care must be taken to either invert all
the conditions separately without fail or invert the complete
statement as one piece. The inversion of the logic inside the
if statement in it’s simplest form can stem either from the
removal or addition of the “not” operator (i.e.,!).

Pattern 5: Intermediates.

™ this.rootNode.addDependency(dependencyGraph.rootNode.key());
i}

complimentaryPart1(dependencyGraph)

E public void complementaryPart2(DAGraph<DataT, NodeT> dependencyGraph){ E
dependencyGraph.parentDAGs.add(this); E

Fig. 7. Pattern 5: Intermediates

Description. This pattern allows more flexibility in the
expression of API usage examples by parameterizing in-
termediate functionalities. Similarly to the extract-method
refactoring, the Intermediates pattern is meant to extract
functionality from an existing method into a new method.
Existing functionality that is related to an API usage can
be extracted to a new method, and replaced with a method
call. This can be done to allow different control flows to
be represented by alternative examples and considered as
equivalent by misuse detection tools.

Example. A simplified example is presented in Figure 7
where the complementaryPart]l method replaces functionality
originally in the example method. This example is trivial
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since it does not reduce the number of statements in the
complementaryPart2 method. However, the transformation
can be expanded to more complex forms that would apply
some separation of concerns. Applying Algorithm 5 to the
example in Fig. 7 would loop through the two API calls
(i.e., addDependency and add), and find that only the
addDependency API call has no dependence on other
variables or API calls. The algorithm then suggests that the
addDependency call can be pulled out into its own method
and that the method can be called to obtain the same result.
Detection strategy. This pattern requires the possibility
of extracting functionality, abstracting this functionality to
an intermediate method and either invoking it in the orig-
inal method or introducing it to the original method as a
parameter. We require that the control and data-flows of
a method be separable before or after an API call. If the
method statements are heavily coupled, this transformation
cannot be applied. A simplified algorithm for detection and
transformation can be found in Algorithm 5.

Algorithm 5: Searching and transforming interme-
diates.
Input : Correct API example code apiFE'x
Output: Complementary artificial example
1 foreach apiCall in apiEx do
2 if apiCall.notDependentOnOtherVars() then

3 apiCall.abstractCallToVar(newV ar)
4 newV ar.add AsMethodParameter()
5 end

Transformation approach. The control and data flows
of the original method must then be analyzed to determine
where a proper method extraction could occur. The transfor-
mation approach is similar to an extract method in refactor-
ing [33]. However, there exist infinite possibilities to extract
new intermediate methods from an existing program. There-
fore, in our heuristics we only extract statements adjacent,
i.e., right before or after, to the API call that is targeted
to create an intermediate example. Once an intermediate
method has been introduced, the original method must be
modified to remove the functionality that was extracted, and
instead call the intermediate method, with its appropriate
parameters.

5 ASSISTING EXAMPLE-BASED APl MiSuse DE-
TECTION

In this section, we evaluate the usefulness of our generated
artificial API examples that are based on the five patterns
discovered in Section 4. In particular, we perform an exper-
iment that detect API misuses in open source projects, with
and without the use of the artificial API usage examples.
In the rest of this section, we present the subjects of the
experiment, the experimental process, and the experimental
results.”

2. A prototype implementation to automate
of complementary artificial examples can be
https:/ /figshare.com/s/337e35{63c41251e20cb

the generation
found online:
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5.1

To test our complementary examples, we specifically rely
on already known API usage examples that have been used
to identify misuses in the MUBench dataset. The MUBench
dataset comes with a prepared benchmark named FSE18-
Extension which contains 107 known misuses, each with a
single known API usage example. We use these existing
API usage examples in the MUBench dataset [34] as the
API usage examples for the API misuse detection tool. The
MUBench dataset provides a baseline of known and vetted
API misuses in a variety of real projects. We therefore use
these API usage examples as input to create our alternative
correct API usage examples.

There may exist other API usage scenarios that the data
in the MUBench dataset does not cover. Therefore, as men-
tioned in Section 3, we use 50 open source Java projects from
a prior study that mined these projects from Github [10].
To avoid bias, we make sure that none of the 50 projects
were included in our qualitative study where the patterns
were discovered (cf. Section 3 and Section 4). All of these
projects are used in prior API-related research and had at
least 17 months of history and had an average of 26K lines of
code (minimum: 1.4K, maximum: 225K). The details of all 50
projects can be found in our replication package identified
in Section 3. Because these projects have not been used in
prior API misuse studies, the results obtained from running
MuDetect on these projects are all manually vetted.

Experimental subjects

5.2 Experimental process

In particular, our experimental process is designed to an-
swer two research questions:

e RQ1: Can artificial examples reduce false positives
from the API misuse detection results?

e RQ2: Would artificial examples negatively impact
the detection of any true API misuse?

Experimental process to answer RQ1. We extract the ex-
isting API usage examples that are provided by MUBench.
We then detect API misuses using the state-of-the-art API
misuse detection tool, i.e., MuDetect, on our 50 open-source
projects. We do this by using the extracted existing ex-
amples for a “cross-project” detection baseline. We save
these results. We then generate artificial API usage exam-
ples to complement the existing API usage examples from
MUBench, based on the five patterns shown in Section 4.
We allow our patterns to generate as many examples as they
can (e.g., the Alternative iterators pattern could generate a
new example that uses a “for” loop using an “Iterator”,
and also a different example that uses a “while” loop with
an “Iterator”). Using these artificial examples, we rerun
MuDetect on the same 50 subject projects, now with our
alternative correct API usages enhancing the approach.

By default, MuDetect would consider all ’correct’ ex-
amples independently to attempt to detect API misuses.
In order to observe the value of the artificial examples
in complementing existing examples, we therefore force
MuDetect to consider our complementary artificial API us-
age examples immutably paired to the original API usage
examples. Note that, we seek to preserve developer intent
and maximize the data available to the misuse detector.
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Therefore, we do not aim to use the artificial examples to
replace the existing ones. Instead, the role of the artificial
example is to complement existing examples. We neither
aim to treat the artificial examples as distinct examples inde-
pendent from the original examples, as we seek to preserve
the existing predictive power of MuDetect and augment it
whenever possible. Finally, we compare the results of both
runs to answer the first research question. If any misuses are
identified by one run but not by the other, we consider these
as candidate false-positives and manually examine them.

Experimental process to answer RQ2. We would like to
ensure that our complementary examples do not negatively
impact the overall power of API misuse detectors. However,
our experimental process for RQ1 cannot serve for this goal
because there exists no ground truth on all of the true API
misuses in the 50 open source projects. On the other hand,
there exists a specially designed experiment, i.e., the exI
experiment in MUBench, which particularly serves the goal
of calculating a recall upper bound for a given API misuse
detectors with known API usage examples. This experiment
is used in prior works as the de facto standard for evaluating
recall for API misuse detection [7]. We therefore run this
experiment with only the original API usage examples. We
then run the experiment again, having the existing examples
complemented by the artificial examples. We compare our
results to determine the effect of our complementary API
usage examples on the recall of an API misuse detector.
In particular, for each run, we follow the same evaluation
approach as Amann et al. [7] and record a positive iden-
tification of an API misuse if any detection proves to be
positive.

5.3 Results

All five of our patterns are applicable to complement the
existing API usage examples in MUBench. Out of all 107
API usage examples in MUBench, only one example does
not meet the detection strategy of any pattern. This API
usage example was created for a synthetic Java survey, and
contained a single statement composed of five Java stream
stages. Because we strategically do not consider streams to
avoid potential mistakes (cf. Pattern 1, Pipeline in Section 4),
we were unable to generate any complementary API usage
examples for this particular API usage example.

In particular, we were able to improve three existing API
usage examples with complementary API usage examples
using the Pipelines pattern, eight using the Alternative iter-
ators pattern, 22 using the Complementary imports pattern,
eight using the Inverted conditions pattern, and 65 using
the Intermediates pattern. Although we were able to express
all five of our patterns on this dataset, the Intermediates
pattern stands out as the most popular pattern in this case.
This dataset contained methods where further separation of
concerns could be introduced, which allowed for a greater
expression of our Intermediates. A different dataset could
perhaps present different pattern frequencies. However, be-
cause our patterns were generated on a completely separate
dataset, and yet all five of our patterns could be used in
the MUBench dataset, we are confident that our patterns
present potential for general complementing of existing API
usage patterns.
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The artificial examples can assist API misuse detection by
reducing false positives. In total, we find 55 cases of API
misuse detection results that were detected with the original
examples but were not detected when complemented by our
artificial examples. We then manually go through each of
those 55 examples to determine if they were API misuses or
not, and which of our transformation patterns was used to
disable their detection. We find that all 55 API usages were
correctly identified when using complementary artificial
examples, and that they were originally mistakenly labelled
as API misuses. MuDetect identified 7,327 potential misuses
without the help of artificial examples. However MuDetect
presents results ordered by the likelihood of a misuse oc-
curring. The top-20 results for each project are normally
evaluated to prevent overwhelming users. Considering the
top-20 results of each project, 36% of the cases removed by
artificial examples directly affect the top-20 results.

Furthermore, the average ranking of the confidence of
our removed cases is 16.47, with a standard deviation
of 15.42, and with the largest confidence rating rated as
42nd highest. These findings indicate that the rest of our
results are not far from the threshold criteria set by prior
research [9]. Furthermore, using artificial examples did not
add any new false positives.

We find that 43/55 (81.8%) of the mistakenly identified
API misuses that were corrected by our complementary ar-
tificial examples used some kind of conditional statements.
This shows that it is particularly important to have a well-
rounded sample of API usage examples that contain various
types of conditional statements because their detection ap-
pears sensitive to their format. The second most common
mistakenly identified API usage type used iterators (6/55),
this can also be used as a suggestion for future API misuse
datasets to carefully consider various types of loops or use
complementary artificial examples to enhance them. Finally,
we report 3/55 wrongly identified API misuses with inter-
mediate methods, 2/55 with pipelines, and 1/55 with static
imports. Although these cases are less prevalent, we still
encourage the use of their transformation patterns because
they still provide a reduction in false positive.

Answer to RQ1: 55 falsely detected API misuses were
prevented by complementary artificial examples. Com-
plementary artificial API usage patterns can therefore
successfully be used to reduce the incidence of false
positive API misuse detection on real world projects.

The artificial examples do not prevent the detection of
true API misuses. Due to build errors for some examples
in the MUBench dataset we were able to obtain results for
95/107 API misuses in the dataset. MuDetect was able to
successfully detect 90/95 of these misuses (94.7% recall)
both with and without our complementary examples. All
90 correctly identified misuses were the same for both
experiments (i.e., with and without our complementary
examples). Therefore, we do not find any case where using
complementary artificial API usage examples reduce the
overall recall of API misuse detectors.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Concordia University Library. Downloaded on July 01,2021 at 01:29:20 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3093246, IEEE

Transactions on Software Engineering

Answer to RQ2: Our findings on the MuBench dataset
indicate that using complementary artificial API usage
examples does not reduce the overall recall of API misuse
detectors (94.7% recall with & w/o our complementary
examples).

6 THREATS TO VALIDITY

Construct validity. We do not claim to have found all API
misuses, falsely detected API misuses, or API usage patterns
pertaining to the APIs in this study. However, we believe
that the projects and tools used in this work are adequate to
produce results that give insight into the problem at hand.
We only provide results that have been vetted by multiple
individuals. Results which were labelled as “Not sure”
could be API misuses, and might uncover more alternate
usage patterns. However, because we could not guarantee
their labelling, they were not considered for the patterns
presented in this paper.

External validity. Because the API misuses, workarounds,
and frequent pattern instances in this study were detected
for Java APIs in Java user applications, it is possible that the
findings in this paper do not generalize to other program-
ming languages. However, although the results presented in
this paper were obtained from Java APIs, the results were
obtained by mining hundreds of user applications for API
misuses without discriminating against any particular APIs.
We therefore believe that although we cannot prove that
our results generalize to other programming languages, the
results presented should generalize to Java APIs. Although
the results presented in this paper use MuDetect, an entire
class of API misuse tools use examples to detect API misuses
our examples could also help these detectors. We simply
evaluate our approach using MuDetect because it is the
current state-of-the-art approach. Furthermore, although the
correct examples are indeed based on MuDetect in this
study;, it is possible to use other tools to find these (e.g., PAM
to find frequent API usages). We mitigate the threat that ties
our approach to specific examples by creating patterns to
generate alternative correct usages that are not dependent
on MuDetect or the examples that were mined for this
study. We derived our patterns and algorithms based on
a manual examination of the outputs of MuDetect. Potential
bugs of the tool may impact some of our results. However,
our methodology and main findings can generalize to other
example-based API misuse detection tools.

Internal validity. The patterns presented to produce com-
plementary artificial API usages, the suggestions presented
for future API misuse detectors, and the findings from
our qualitative study might not be fully indicative of API
misuses and could present internal experiment bias. We
attempted to mitigate these threats by having multiple re-
viewers for the API misuses that we presented in this work,
and having these reviewers reach consensus on discussions
pertaining to the patterns and suggestions that we present
in this paper. Furthermore, we use completely different
samples to obtain and to test the patterns presented in this
work. Although the sample size of our qualitative study is
statistically significant (384), it is possible that our findings
only generalize to the MuDetect tool. However, MuDetect
uses a published and general misuse detection approach
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that has been shown to be the current-state-of-the-art in
example based static API misuse detection. Therefore, we
believe that our results can contribute to improving the
current state-of-the-art.

7 RELATED WORK

In this section we discuss prior work related to the research
presented in this paper.

71

API misuse can stem from misunderstood or neglected
constraints such as call order, or state conditions [1], [35].
Misuse detection tools and approaches exist to detect these
misuses to reduce their incidence [35]-[41]. Various methods
exist to detect API misuses [39], [42]-[48]. Some approaches
use fine-grained API-constraint knowledge graphs to detect
if API usages violate known usage constraints such as
call order, condition-checking, return-conditions, and ex-
ceptions [1], [24]. In some approaches [1], these API con-
straints are obtained by crawling online API documentation,
which is then transformed into expected declaration graphs
that can then be compared against source code to detect
constraint violations. Rule based API misuse detection ap-
proaches require manual evaluation of the constraints to
determine their validity. While this approach has shown
to be competitive in both precision and recall with other
approaches such as MuDetect. We chose not to use this type
of approach in our study because the manual evaluation of
API constraints becomes prohibitive at scale, and state-of-
the-art static detectors (e.g., MuDetect) obtain similar results
without these drawbacks.

API misuse tools, like MuDetect, rely on pattern mining
approaches that mine API usage examples from existing
user projects to compare against potential misuses [24],
[24], [34], [38], [48]-[50]. These approaches require either
vetted API usage examples to compare against user code to
detect misuses, or they can mine examples from user code
automatically. MuDetect is a recent state-of-the-art attempt
at this type of approach which uses cross-project data to
improve detection of API usage examples [9]. These API
usage examples can then be used to detect API misuses.
The approach has shown state-of-the-art precision and re-
call, particularly when used in a cross-project setting [50].
We chose to use MuDetect as an API misuse detector for
this work because it presented state-of-the-art results and
because it can mine API usage examples from user projects
which do not require manual vetting. Automatic extraction
of usage examples is a great advantage when dealing with
large scale detection.

API misuse detection

7.2 APl usage patterns

Learning how to use APIs can be time consuming, par-
ticularly when documentation or usage examples are
sparse [18]. API mining algorithms [18], [51], [52] allow
the extraction of frequently used API usage patterns that
can then be used to provide relevant usage examples [51],
API recommendation engines [19], [53], or insight into API
usages [21]. PAM [18] is a state-of-the-art approach that
mines existing frequent usage patterns from user projects.
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These patterns are mined using a "near parameter-free
probabilistic algorithm”, which returns frequent API se-
quences that occur more than would be expected by ran-
dom chance [18]. These patterns can be considered to be
the “most-interesting” sequences of API usage in a given
sample [18]. Approaches such as MARBLE [21], use these
frequently used API patterns, coupled with abstract syntax
trees (AST) to identify examples of boilerplate code. Boil-
erplate code is repetitive code that must be invoked to get
some underlying functionality to work [21]. MARBLE is an
approach to mine this boilerplate code from user projects.
These examples of boilerplate code can then be given to
API developers to uncover potential improvements to their
API [21]. Although these approaches are able to mine in-
teresting API usage sequences, they still rely on frequent
patterns to obtain results. If a training dataset does not
contain sufficient examples, then knowledge gaps can occur
even with approaches such as PAM. Therefore, in this paper
we chose not to rely on frequent pattern mining approaches
because they have already been used in existing API misuse
detection and have not solved the problem of false positives
or low recall (e.g., MuDetect uses pattern frequency as one
of it’s heuristics to identify API usage examples).

Detecting semantically equivalent code could yield more
API usage patterns. Indeed, research has been done in the
detection of semantically equivalent code [54]-[56] and fault
tolerance [57]. However, we chose not to rely on tools that
generate or check for automatically generated semantically
equivalent patterns [55], [58] because we believe that our
approach allows benefits that semantically equivalent code
generation cannot provide at this time. For example, while
checking for semantically equivalent code can detect a
large number of semantically equivalent examples, it would
require checking every example for equivalence, a more
computationally expensive task than the comparisons used
in our approach. Furthermore, contrarily to our patterns,
automatically generated semantically equivalent examples
may not reflect real usage patterns or developer intent.
Because we are simultaneously attempting to discern how
to improve API misuse detection, and the different ways in
which developers actually use APlIs, automating the process
may obscure the overall developer intent. For these reasons,
at this time, we base our examples on user generated content
to preserve the overall developer intent, reduce computa-
tional overhead, and to remain compatible with existing
misuse detection approaches. However, we believe that
coupling the automatic detection of semantically equivalent
code and an overall understanding of developer intent is a
very interesting topic for future research.

8 CONCLUSION

In this paper, we conduct a qualitative study on the falsely
detected API misuses obtained by using a state-of-the-art
example-based API misuse detection approach on a large
sample of projects. By manually studying real examples
of falsely detected API misuses, we uncover 108 cases of
alternate but correct API usages that were falsely identified
as API misuses. Through a manual investigation by three
reviewers, we discover five patterns, which can be used
to transform existing API usage examples into artificial
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API usage examples. Such artificial examples can cover the
knowledge gaps caused by a lack of diversified existing
API usage examples. We provide detailed discussions and
simplified examples to explain these five patterns, as well
as our strategies to detect these patterns in the source code,
and approaches to transform existing API usage examples
with these patterns.

We evaluate the usefulness of the complementary artifi-
cial API usage examples through the use of 50 open-source
Java projects and through the MUBench misuse benchmark.
We find that using the artificial examples does not reduce
the recall of API misuse detection but does allow for the
removal of falsely identified API misuses. Our findings
highlight the potential of generalizing API usage examples
through pattern-guided source code transformations and
reduce the dependence of example-based API misuse detec-
tion on haphazardly mining large samples of user projects.
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