
1

A Qualitative Study of the Benefits and Costs of
Logging from Developers’ Perspectives

Heng Li, Weiyi Shang, Bram Adams, Mohammed Sayagh, and Ahmed E. Hassan

Abstract—Software developers insert logging statements in their source code to collect important runtime information of software
systems. In practice, logging appropriately is a challenge for developers. Prior studies aimed to improve logging by proactively inserting
logging statements in certain code snippets or by learning where to log from existing logging code. However, there exists no work that
systematically studies developers’ logging considerations, i.e., the benefits and costs of logging from developers’ perspectives. Without
understanding developers’ logging considerations, automated approaches for logging decisions are based primarily on researchers’
intuition which may not be convincing to developers. In order to fill the gap between developers’ logging considerations and
researchers’ intuition, we performed a qualitative study that combines a survey of 66 developers and a case study of 223
logging-related issue reports. The findings of our qualitative study draw a comprehensive picture of the benefits and costs of logging
from developers’ perspectives. We observe that developers consider a wide range of logging benefits and costs, while most of the
uncovered benefits and costs have never been observed nor discussed in prior work. We also observe that developers use ad hoc
strategies to balance the benefits and costs of logging. Developers need to be fully aware of the benefits and costs of logging, in order
to better benefit from logging (e.g., leveraging logging to enable users to solve problems by themselves) and avoid unnecessary
negative impact (e.g., exposing users’ sensitive information). Future research needs to consider such a wide range of logging benefits
and costs when developing automated logging strategies. Our findings also inspire opportunities for researchers and logging library
providers to help developers balance the benefits and costs of logging, for example, to support different log levels for different parts of a
logging statement, or to help developers estimate and reduce the negative impact of logging statements.

Index Terms—software logging, issue reports, developer survey, qualitative analysis.

F

1 INTRODUCTION

Developers insert logging statements in the source code to
collect valuable runtime information of software systems.
Logging statements produce execution logs at runtime,
which are usually appended onto log files or the standard
output. Logs play important roles in the daily tasks of de-
velopers and other software practitioners [2]. For example,
logs are usually the only available resource for diagnosing
field failures [38].

Prior studies find that developers face challenges when
making logging decisions [3, 40]. Therefore, prior stud-
ies have proposed automated approaches to help devel-
opers improve their logging decisions, through proactive
logging [39, 41] and learning to log [12, 20, 21, 22, 44]. Proactive
logging approaches use static analysis to automatically add
more logged information to the existing code, in order to im-
prove software failure diagnosis. Learning to log approaches,
on the other hand, learn statistical models from existing
logging practices and further leverage the models to provide
logging suggestions.

However, there exists no work that systematically stud-
ies developers’ logging considerations, i.e., the benefits and

• Heng Li, Mohammed Sayagh, and Ahmed E. Hassan are with the Software
Analysis and Intelligence Lab (SAIL), School of Computing, Queen’s
University, Canada.
E-mail: {hengli, msayagh, ahmed}@cs.queensu.ca

• Weiyi Shang is with the Department of Computer Science and Software
Engineering, Concordia University, Canada
E-mail: shang@encs.concordia.ca

• Bram Adams is with MCIS, Polytechnique Montreal, Canada.
E-mail: bram.adams@polymtl.ca

costs of logging that developers consider when making log-
ging decisions. Without a clear understanding of develop-
ers’ logging considerations, automated approaches for log-
ging improvement might not be convincing to developers.
On the other hand, developers may not be fully aware of the
benefits and costs of logging, and in some cases raise con-
flicting views (see the discussions in Section 5). Therefore,
this work performs a qualitative study to understand the
benefits and costs of logging from developers’ perspectives,
as well as how developers balance such benefits and costs.

Our qualitative study combines a survey of developers
and a case study of logging-related issue reports. In our
survey, we asked developers open-ended questions regard-
ing their logging considerations and how they balance the
benefits and costs of logging. In our case study, we derive
developers’ logging considerations that are communicated
in the logging-related issue reports. While the survey pro-
vides us with developers’ general opinions regarding their
logging considerations, the case study reveals developers’
logging considerations in the context of specific scenar-
ios (i.e., logging-related issues). For example, issue report
HADOOP-136931 raises a concern that logging an error mes-
sage for a successful operation is confusing and misleading.

In particular, our qualitative study aims to find answers
to the following three research questions (RQs).
RQ1: What are the benefits of logging from developers’ perspec-

tives?
Without understanding the benefits of logging from
developers’ perspectives, automated approaches for

1. https://issues.apache.org/jira/browse/HADOOP-13693

2

logging improvement may not meet developers’ real
needs. We observe that developers consider a wide
range of logging benefits. While some logging bene-
fits (e.g., diagnosing runtime failures and using logs as a
debugger) are discussed in prior studies, most of our
newly uncovered benefits of logging (e.g., user/customer
support and system comprehension) have never been ob-
served nor discussed in prior studies.

RQ2: What are the costs of logging from developers’ perspec-
tives?
Prior work proposed automated approaches to enrich
logging information in the source code, which usually
only considered the performance overhead to evaluate the
costs of the added logging information. However, we
observe that developers are actually concerned about
a much wider range of logging costs. In particular,
some important costs of logging (e.g., exposing sensitive
information) are ignored by both prior work and most
developers.

RQ3: How do developers balance the benefits and costs of log-
ging?
Prior work proposed automated approaches to help
developers insert logging statements in a systematic
manner, e.g., proactively adding logging information
into certain code snippets (e.g., exception catch blocks)
or using statistical models to learn where to log. How-
ever, we observe that developers use ad hoc strategies
to balance the benefits and costs of logging. For ex-
ample, in addition to proactively determining where
to log, developers may add logging statements over
time on demand. In addition to deciding on the most
appropriate log levels in the first place, developers may
evaluate the impact of logging and refactor log levels
afterward.

Our work helps developers and researchers understand
a wide range of logging benefits and costs. Developers
need such a comprehensive understanding in order to make
better use of logging (e.g., to enable customers to solve
problems themselves using logs) and avoid unnecessary
logging costs (e.g., exposing users’ sensitive information).
Future research needs to consider our newly uncovered
benefits and costs of logging when developing automated
logging strategies. Our work also encourages logging li-
brary providers and researchers to put efforts into improv-
ing current ad hoc logging practices. For example, logging
library providers could improve their logging libraries by
providing more flexible logging options (e.g., to support
different log levels for different parts of a logging state-
ment). Future research could help developers leverage the
benefits of logging while minimizing logging costs (e.g., to
help developers estimate and reduce the negative impact
of logging, or to help developers improve the quality of
logging).

Paper organization. The remainder of the paper is orga-
nized as follows. Section 2 surveys prior studies that are
relevant to our study of developers’ logging considerations.
Section 3 describes our qualitative study methodology. Sec-
tion 4 presents our findings that answer our research ques-
tions. Section 5 discusses the implications of our findings.
The threats to the validity of our findings are discussed

Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

2.1 Automated Logging Improvement

Prior work on logging improvement does not fully con-
sider the benefits and costs of logging from developers’
perspectives. Prior studies propose LogEnhancer [41], Er-
rlog [39] and Log20 [43] that proactively add additional log
information in the source code to maximize the debugging
capability of logging. LogEnhancer [41] automatically adds
causally-related information on existing logging statements
to aid in future failure diagnosis. Errlog [39] analyzes the
source code to detect unlogged exceptions (abnormal or
unusual conditions) and automatically insert the missing
logging statements. Log20 [43] automates the placement of
logging statements such that the informativeness of the
placed logging statements are maximized under a perfor-
mance overhead threshold. In comparison, Log2 [6] and
Log4Perf [37] proactively insert logging statements in the
source code for performance monitoring and diagnosis.
Although these studies claim to add minimal performance
overhead, they fail to consider other logging costs that
are discussed in this work. Future proactive logging tools
should fully consider the benefits and costs of logging that
are discussed in this work.

Instead of proactively inserting logging information to
the source code, prior studies also leverage statistical mod-
els to learn where to log. LogAdvisor [44], SmartLog [12] and Li
et al. [20] extract contextual features of a code snippet (e.g.,
an exception catch snippet), then learn statistical models to
suggest whether a logging statement should be added to
such a code snippet. Li et al. [21] also propose an approach
to automatically suggest the most appropriate log level for
a logging statement, based on its contextual features. Liu et
al. [23] use representative learning to rank the variables in
the source code based on their likelihood of being logged.
These approaches aim to help developers make informed
logging decisions by providing logging suggestions. How-
ever, without a clear understanding of developers’ logging
considerations, automated logging suggestions might not
be convincing to developers. We believe that the logging
benefits and costs uncovered in this paper can help re-
searchers better understand the logging considerations from
developers’ perspective and provide guidance for future
work on learning where to log.

2.2 Studying Logging Practices

Prior work on logging practices studies the artifacts and
the maintenance efforts of logging instead of consider-
ing why developers make their logging decisions in the
first place. Prior work studies the characteristics of current
logging practices. Fu et al. [8] study the logging practices
in two industrial software projects. They investigate what
categories of code snippets (e.g., exception catch blocks) are
logged. Another study of industrial logging practices [28]
observes that logging behaviors are strongly developer
dependent, and highlights the need to establish standard
company-wide logging policies. Yuan et al. [40], Chen et
al. [3], Shang et al. [32], and Kabinna et al. [14, 15] study

3

Developer
survey

Issue
reports Qualitative

analysis Findings

Fig. 1. Overview of our qualitative study.

the evolution of logging code in open source projects. They
observe that developers spend much effort on updating
their logging code (e.g., modifying logging statements or
upgrading logging libraries). He et al. [11] find that devel-
opers use repetitive text in their logging statements and
demonstrate the flexibility of automatically generating log-
ging text. While these studies focus on developers’ logging
behaviors, our work goes deeper and study developers’
considerations of the benefits and costs of logging behind
their logging behaviors.

Barik et al. [2] study the activities of using event data
(logs and telemetry) that are performed by different roles
in Microsoft. Cito et al. [5] study how developers utilize
data and tools (including log data and log management
& processing tools) in the software development process
in a cloud environment. While these studies focus on how
developers and other roles utilize log data, our work studies
the benefits and costs of logging from developers’ perspec-
tives and how developers balance the benefits and costs of
logging.

Chen et al. [4] and Hassani et al. [9] investigate logging-
related issues in open source projects and propose auto-
mated solutions to detect such issues. Chen et al. [4] study
log-fixing patterns in open source projects and character-
ize logging anti-patterns (e.g., nullable objects). Hassani et
al. [9] study the characteristics of logging-related issues and
summarize the root causes of logging-related issues (e.g.,
inappropriate log level). In comparison, our work provides a
comprehensive understanding of developers’ logging con-
siderations (i.e., the benefits and costs of logging from
developers’ perspectives).

3 RESEARCH METHODOLOGY

As shown in Figure 1, we combine a survey of developers
and a case study of logging-related issue reports in our
qualitative study. In the survey, we directly collect answers
from developers about their logging considerations, which
provides us with a comprehensive understanding of devel-
opers’ logging considerations from a general perspective.
In comparison, the case study provides us a more detailed
context of real-life scenarios that are described in logging-
related issue reports. As discussed in Section 4, the findings
derived from the survey and those derived from the case
study of issue reports complement each other.

3.1 Qualitative Study Part I (Developer Survey)

3.1.1 Survey design
In order to answer our research questions (see Section 1), we
asked developers the following three open-ended questions:
Q1: Based on your experience, what are the benefits of log-

ging that you consider when making logging decisions?
Q2: Based on your experience, what are the costs (negative

impact) of logging that you consider when making
logging decisions?

Q3: How do you usually balance the benefits and costs of
logging?

We asked these questions in an open-ended way to get free
opinions from developers. We did not want the results to
be impacted by the limitations of our understandings by
asking closed-ended questions. We also asked an additional
question about developers’ interest in the outcomes of the
survey:
Q4: Would you like to keep in touch about the outcomes of

this survey?
We sent these questions to each of our survey partici-

pants in an email. In the next sub-section, we describe how
we selected participants in our survey.

3.1.2 Participants
We selected participating developers who had considerable
logging experiences in top-rated open source projects, for
two reasons: 1) developers who are experienced in logging
are more likely to have a better understanding of the benefits
and costs of logging; 2) the top-rated projects are likely
to have a higher requirement for logging quality, which is
desired for our study of logging.

Specifically, we selected open source software projects
under the Apache Software Foundation2 (ASF) that received
the most starts on GitHub3. We selected software projects
under ASF because ASF incubated many popular software
projects (e.g., Hadoop, Maven, Spark, JMeter, Kafka, NetBeans,
Tomcat, etc.) that are widely used in various domains of
today’s software industry. Besides, ASF projects usually use
standard logging libraries (e.g., SLF4J4), which allows us to
track developers’ logging experience in a large number of
projects.

For each selected open source project, we analyzed
its code change history and tracked each developer’s log
changes (i.e., adding/deleting/modifying logging state-
ments). Then, we selected those developers who changed
at least five logging statements in the past years (i.e., March
1, 2016 to March 1, 2019) as our participants.

We did not pre-determine the number of projects and
the number of participants at the beginning of the survey.
Instead, we first sent our emails to the selected developers of
a few most top-rated projects. Based on the responses from
the surveyed developers, we gradually added more projects
and more participants until we received enough responses.
At the end, we sent our questions to 1,398 developers
across 55 different projects. We received responses from 66
participants across 31 different projects, with a response rate

2. https://www.apache.org
3. https://github.com/apache
4. https://www.slf4j.org

4

Answer to Q1 (Benefits of logging):
* Being able to inspect the current/recent of the program without

interrupting it
* Being able to inspect previous program executions (e.g., for

comparison purposes)
* Being able to establish the temporal order of things when it’s

hard to do so in the IDE, e.g ., due to breakpoints messing up
timings in a multithreaded execution context

* Communicate liveness and progress, which may be otherwise hard
to indicate (i.e., what is my process doing now?)

Answer to Q2 (Costs of logging):
* Logging often equals printouts, so there are performance costs

involved making it inappropriate for hot paths.
* Excessive logging clutters the log file /screen, making it difficult

to actually identify anything of value.
* Large logs may take ages to analyze (load in text editors) and

even just to grep over.
* Large logs have a tendency to make disks run out of space, causing

all kinds of cascading (and sometimes fatal) operational issues

Answer to Q3 (Balancing logging benefits and costs):
* Personally I ’d say I ’m not very generous with logging by default. I

tend add them only when I see a direct value, e.g. after having
dealt with an issue which these logs helped resolve and may
help resolve/identify in the future.

* If I really have to log a hot path, I usually do so by logging
once in T time / once in N invocations.

* I also use log levels (DEBUG, INFO, etc) to control what gets
logged when. Some logging infrastructures even allow changing
these log levels for various components at run time, though this
often requires tempering with log configurations which I don’t
think anyone particularly likes to do.

Fig. 2. An example response to our survey invitations.

of 5%. The 31 projects cover a variety of domains, including
big data (e.g., Hadoop), cloud computing (e.g., CloudStack),
database (e.g., HBase), network client/server (e.g., Camel),
testing (e.g., JMeter), build management (e.g., Maven), web
framework (e.g., Nutch), content (e.g., PDFBox), and library
(e.g., Mahout).

3.1.3 Survey responses
Most of the developers who responded to our survey in-
vitations provided high-quality responses. Such responses
usually contain valuable opinions of developers regarding
their logging experience and logging considerations. Fig-
ure 2 shows an example response provided by a participat-
ing developer. In this response, the developer talked about
multiple benefits (e.g., communicating liveness and progress)
and costs (e.g., performance costs) of logging, as well as
approaches to balance the benefits and costs of logging
(e.g., aggregating logging in hot paths), based on his own
experience. Table 1 shows some statistics of the length of
the responses. An average response has more than 900
characters.

3.1.4 Qualitative analysis of survey data
We used an open card sorting approach [29, 33, 45] to code
the survey data according to our research questions. Open
card sorting is widely used in the software engineering
community to deduce a higher level of abstraction (i.e.,
categories or themes) from lower level descriptions of data
(e.g., survey responses) [24, 26, 31]. In our open card sorting
approach, we aimed to derive high-level answers to our

TABLE 1
Statistics about the length (number of characters) of the survey

responses.

Statistics Q1
answer

Q2
answer

Q3
answer

All
answers

Max length 1,140 2,063 1,910 4,578
Avg length 334 331 270 935
Median length 271 203 203 725
Min length 39 11 6 66

research questions from the responses provided by the
participating developers. For each answer to each survey
question, we can assign multiple labels. For example, for the
Q2 answer in the response shown in Figure 2, we can assign
multiple labels for logging costs (e.g., performance cost, and
hiding valuable information). We did not print our content
(i.e., survey responses) on physical cards. Instead, we use
the Emacs Org Mode5 to organize our codes and quotes.
We also use a GitHub repository to track the history of our
coding process. The first three authors of the paper (i.e.,
coders) jointly performed the coding process, following the
steps listed below:
Step 1: Round-1 coding. We randomly and evenly dis-

tributed all the responses to the three coders. Each
coder coded one-third of the responses separately,
which took several hours up to one day for each coder
to finish their portion.

Step 2: Discussions after round-1 coding. The goal of the
discussions is to reach the same codes among the
coders. We had a few meetings to discuss our resulting
codes and reached consensus. Each meeting took one to
two hours.

Step 3: Revisiting round-1 coding. Based the updated
codes from our discussions, we revisited our separate
round-1 coding results, which took one to two hours
for each of us.

Step 4: Round-2 coding. Each coder coded another one-
third of the responses separately, based on the codes
resulting from round-1. Each portion of the survey
responses assigned to a coder in round-1 were ran-
domly and evenly distributed to the other two coders
in round-2. In this way, we made sure each response
was coded by two different coders in the two rounds.
Coders could add new codes in round-2. Round-2
coding took several hours for each of us to finish our
separate portion.

Step 5: Discussions after round-2 coding. We had one
more meeting to discuss our separate codes updated
in round-2 and reached consensus. The meeting took
two hours. We finalized the codes after this step.

Step 6: Revisiting round-1 and round-2 coding. Based on
the updated codes from our discussion, we revisited
our round-1 and round-2 coding results, which took
one to two hours for us to finish our respective por-
tions. We measured our inter-coder agreement (see
Section 3.3) after this step.

Step 7: Resolving disagreement. We discussed every con-
flict in our coding results and reached an agreement.

5. https://orgmode.org

5

Whenever there was a conflict, the two coders who
coded that particular response discussed and tried to
resolve it; if an agreement could not be reached, the
third coder was involved and voting was conducted if
necessary. We resolved the disagreement in a two-hour
meeting.

3.2 Qualitative Study Part II (Issue Reports)
3.2.1 Subject Projects
In order to study developers’ logging considerations, we
manually investigated the logging-related issue reports
from three large and successful open source software
projects, namely Hadoop Common6, Hive7, and Kafka8. We
focused only on three projects as we needed to have a
good understanding of the source code and the runtime
behaviors of these projects, in order to better understand the
context of the logging-related issue reports. Hadoop Common
implements the common utilities for Hadoop, a distributed
computing platform. Hive is a data warehouse that supports
accessing big data sets residing in distributed storage using
SQL. Kafka is a streaming platform for messaging, storing
and processing real-time records. All of these projects are
widely used by today’s tech giants, such as Google, Ama-
zon, and Facebook. We selected these three subject projects
because their logging code has been actively developed
and maintained. For example, they have many logging-
related issue reports that are dedicated to adding, removing,
and improving logging code, besides fixing logging-related
bugs. As the log messages that are generated by these
projects are exposed to the aforementioned tech giants as
well as a much wider audience, the quality of their logging
code might be critical to their success. Besides, all of these
projects use JIRA9 as their issue tracking systems, making it
convenient for us to extract issue report data.

We study the logging-related issue reports that were
created from June 2012 to June 2017. We extracted the
logging issue data in December 2017 (at least six months
after the creation of any studied issue report), to ensure that
the status of the studied logging issues is relatively stable
after a long time since their creation.

3.2.2 Collecting logging-related issue reports
We extracted our logging issues from the Apache JIRA issue
tracking system10. Figure 3 demonstrates our data extraction
process. First, we used the JIRA Query Language (JQL) to
automatically search for the JIRA issues reports that are
related to logging (i.e., issue reports with logging-related
keywords in their summaries). We used the JQL query in
Figure 4 to search for the logging issue reports of each of
the studied projects. The “Project Name” is replaced by
“Hadoop Common”, “Hive”, and “Kafka” for our respective
projects. This JQL query searches for all the issue reports of
the specified project that have “log”, “logger” , “print” ,
or their variations (e.g., “logging”), but don’t have “log in”,
“log out”, “blue print”, or “print” and “command” together,

6. http://hadoop.apache.org
7. https://hive.apache.org
8. https://kafka.apache.org
9. https://www.atlassian.com/software/jira
10. https://issues.apache.org/jira

Issue
tracking
system

Issue reports
with logging

keywords

Issue reports
w/o logging

keywords

Automated
filtering

(JQL)

Manual
filtering

Logging
related
issues

Non-logging
issues

Duplicate
logging
issues902

20

533

349

Fig. 3. Our process of collecting logging-related issue reports.

project in (”Project Name”) AND summary ˜ ”(log || logger || print)
NOT (\”log in\” || \”log out\” || \”blue print\” || \”print
command\”˜10)” ORDER BY created DESC

Fig. 4. The JQL query that we used to search for the logging-related
issue reports.

in its summary, sorted by their creation time using a reverse-
chronological order.

The resulting issue reports from the automated filtering
process may falsely include some non-logging issue reports.
For example, issue report HADOOP-1406011 has “log” in its
summary but it is about the access control for the “logs”
folder instead of a logging issue. In order to remove these
non-logging issue reports, we manually examined all the
resulting issue reports from the automated filtering process.
For each issue report, we first checked its summary to
determine if it is a logging issue. If we could not decide it
from the summary, we further checked the description of the
issue report. We only kept the issue reports that deal with
logging issues. We also removed duplicated logging issue
reports and kept only one issue report for each duplication.
We ended up with 533 logging-related issue reports.

Table 2 shows the number of issue reports that we ob-
tained from the automated filtering process and the number
of remaining issue reports after the manual filtering process
(i.e., the number of logging issue reports that are studied
in the rest of the paper). Using our query criterion (i.e.,
Figure 4), we get 193, 395 and 314 issue reports for Hadoop
Common, Hive and Kafka, respectively. 74% and 68% of the
JQL-queried issue reports are concerned with logging for the
Hadoop Common and Hive projects, respectively. However,
only 39% of the JQL-queried issue reports are concerned
with logging for the Kafka project. As the Kafka project deals
with messaging, storing and processing of log messages,
it has a large number of issue reports with the keyword
“log” (or its variations) in their summaries but they are not
necessarily related to the logging aspect of the project.

3.2.3 Qualitative analysis of issue reports
We used a similar approach as the one we used for the
qualitative analysis of the survey data (Section 3.1.4) to
code the logging-related issue reports. Our goal is not to
find the root causes of the reported issues. Instead, we aim
to understand developers’ considerations of the benefits
and costs of logging that are communicated during the

11. https://issues.apache.org/jira/browse/HADOOP-14060

6

TABLE 2
Number of studied logging issue reports per project.

Project # JQL-queried issues # Logging issues

Hadoop Common 193 143 (74%)
Hive 395 268 (68%)
Kafka 314 122 (39%)

Total 902 533 (59%)

reporting, discussion, and fixing processes of the issues, as
well as developers’ strategies of balancing logging benefits
and costs that are reflected in the issue reports. For each
logging-related issue report, we examined the summary,
description, comments, patches, and the associated code
review comments to extract useful information that answers
our research questions. Investigating an issue report usually
involves much effort to understand the context and devel-
opers’ considerations that are reflected in their interactions
with the issue report. Therefore, instead of analyzing all
the 533 logging-related issue reports, we randomly chose
a statistically representative sample of 223 issue reports,
which ensures a 95% confidence level on a 5% confidence
interval.

We coded the issue reports using the existing codes that
we derived from the survey responses as seeding codes. We
also added new codes when we coded the issue reports. In
other words, we used a hybrid card sorting approach [45]
to code the issue reports. We followed similar steps as
described in Section 3.1.4 to code our issue reports, except
that we only performed one round of coding as we reused
the codes derived from the survey responses. The first four
authors of the paper (i.e., coders) jointly performed the
coding process, following the steps below:

Step 1: Initial coding of issue reports. Each issue report
was randomly assigned to two coders. Coders code the
issue reports using the codes derived from the survey
responses, while being allowed to add new codes. This
step took a few days for each coder to finish their
separate portion.

Step 2: Discussions after the initial coding. We had two
meetings to discuss our separate codes updated in the
initial coding of the issue reports and reached consen-
sus. Each meeting took one to two hours. We finalized
the codes for the issue reports after this step.

Step 3: Revisiting the issue-report coding. Based on the
updated codes from our discussions, we revisited our
coding for the issue report data, which took a few
days for each of us to finish our separate portion. We
measured our inter-coder agreement (see Section 3.3)
after this step.

Step 4: Resolving disagreement. We discussed every con-
flict in our coding results and reached an agreement.
Whenever there was a conflict, the two coders who
coded that particular issue report discussed and tried
to resolve it; if an agreement could not be reached, a
third coder was involved and voting was conducted if
necessary. We resolved the disagreement after a three-
hour meeting followed by a one-hour meeting.

TABLE 3
Reliability of our qualitative study measured by Krippendorff’s α.

Krippendorff’s α

Coding the survey responses 0.825
Coding the issue reports 0.815

3.3 Measuring the Reliability of our Qualitative Study

Reliability is a prerequisite for ensuring the validity of the
coding results [1, 18]. The coding results are reliable if the
coders show a certain level of agreement on the categories
assigned to the coded instances (a.k.a., inter-coder agree-
ment) [1, 18].
Krippendorff’s α. In this work, we use Krippendorff’s
α [10, 18] to measure the inter-coder agreement of our
coding results. Krippendorff’s α is a standard and flexi-
ble coefficient for measuring inter-coder agreement [1, 10],
which takes the form of:

α = 1− Do

De
(1)

where Do is the observed disagreement between coders and
De is the disagreement expected by chance. When coders
agree perfectly, α = 1; when coders agree as if chance had
produced the results, α = 0, which indicates the absence
of agreement [17]. The detailed methodology for calculating
Krippendorff’s α is described in prior work [17].

As the coded categories are non-exclusive in our coding
scheme (i.e., we can assign multiple categories to each
survey response or issue report), we cannot directly use
Krippendorff’s α which requires a single value to be as-
signed to each coded item. Instead, we treat each category
for each coded item as a coding unit and measure the coders’
agreement on the coding units. In other words, we measure
the coders’ agreement on whether a particular category (e.g.,
a logging cost) should be assigned to a coded item (e.g., a
survey response).

4 FINDINGS

In this section, we present the findings of our qualitative
study. We first provide a high-level overview of our findings
in Section 4.1. Then, we present more detailed results for
answering our research questions in Section 4.2 (RQ1),
Section 4.3 (RQ2), and Section 4.4 (RQ3).

4.1 Overview

86% of the survey respondents indicated their interest
in the outcomes of our survey. Among the 66 survey
respondents, 57 (86%) of them provided positive answers
to our survey question Q4 (see Section 3.1.1), for example:

“Feel free to send your results to the Hadoop Common Dev
list. Others in the community may find it interesting.”

The results of our qualitative study are reliable. As shown
in Table 3, our coding of the survey response data achieves a
Krippendorff’s α of 0.825, and our coding of the issue report
data achieves a Krippendorff’s α of 0.815. Krippendorff [18]
suggests that α ≥ 0.800 indicates a reliable agreement.

7

While logging-related research usually considers a single
benefit or cost of logging, developers consider a much
wider range of logging benefits and costs. For example,
prior studies [39, 41, 43] only consider the benefit of sup-
porting debugging and the cost of performance overhead
when proactively adding extra logging information in the
source code. In our survey, 97% (64 out of 66) and 100% of
the respondents mentioned the benefits and costs of logging,
respectively. There are a median of two types of logging
benefits and two types of logging costs mentioned by each
developer in our survey. Overall, developers consider a
variety of logging benefits (see Table 4) and logging costs
(see Table 5). In fact, some respondents do not take into
consideration the performance overhead which was used
as the only criterion to evaluate logging costs in prior
work [39, 41, 42, 43].

“There is virtually no overhead and it makes sense to log as
much as possible. Of course there is a problem of runaway log
length which should be considered.” [S]12

Developers balance the benefits and costs of logging in
ad hoc ways. In our survey, all the respondents shared
their approaches for balancing logging benefits and costs.
Each developer mentioned a median of two strategies for
balancing the benefits and costs of logging. Overall, devel-
opers consider a variety of strategies (Table 6) to balance the
benefits and costs of logging. They usually find it difficult
to determine appropriate logging in the first place. Instead,
they maintain their logging code by continuous trials-and-
errors.

“Besides constant arguing whether certain log-lines need to
be INFO, DEBUG or whatever with colleagues, the log-format
produced is also changed from time to time due to changes
in the tooling support or services used to analyse the logs
automatically (i.e. create issue tickets via Sentry).” [S]

As an important step, this work aims to understand the
benefits and costs of logging from developers’ perspectives.
In the rest of this section, we present the detailed findings
of our qualitative study, in particular, as answers to our
research questions.

4.2 Benefits of Logging

Table 4 summarizes the benefits of logging that we derived
from our collected survey responses and issue reports. In
total, we derived eight main categories of logging benefits,
each of which may include several second-level categories
and third-level categories. These categories fall into a few
broader themes: assisting in troubleshooting, tracking exe-
cution status, assisting in comprehension, and bookkeep-
ing. In the rest of this sub-section, we present the main
categories of logging benefits under each theme.

4.2.1 Assisting in troubleshooting
Diagnosing runtime failures. When there is a system fail-
ure, the first action is to figure out what is wrong, for example,
whether it’s a user configuration error or a software bug.
Logs are usually an important or even the only source

12. ”[S]” indicates a quote from the survey of developers; ”[I]”
indicates a quote from the issue reports.

for diagnosing a system runtime failure (e.g., a field fail-
ure) [2, 5, 6]. This category does not include the benefit of
using logs as a debugger to trace down execution paths.

“The upmost priority in our case is to be able to state the
reasons for a request failing and whether it was our fault or
the user’s fault by sending an erroneous request.” [S]

Using logs as a debugger. When the diagnosis finds there
is a bug in the software, logs can be used as a debugger to
help developers narrow down the execution paths and find
the root cause of the software failure [2, 5, 38, 39, 41, 43].
In particular, logging specific information instead of general
information (e.g., HIVE-1116313), logging the causes of an
error in addition to the error itself (e.g., KAFKA-416414),
and logging the stack trace of an unexpected exception (e.g.,
HADOOP-1368215) in addition to the exception message can
effectively help developers narrow down the root causes.
User/customer support. Logs are directly exposed to users
and customers. Well-developed logs can provide actionable
suggestions for users to solve their problems by themselves
when using the software:

“If you do it well enough, your customers will be able to solve
their own issues, or at worst be well informed when filing a
support case. ” [S]

4.2.2 Tracking execution status
Tracking execution progress. Logs help track the status
or progress of an execution, such as the start or end of
an event (e.g., HIVE-1131416), a status change (e.g., flip
over a flag, HADOOP-1004617), an ongoing action (e.g.,
retrying, HADOOP-1065718), or the status of waiting for
some resources (e.g., waiting for a lock, HIVE-1426319). In
particular, printing the progress information for a process
that takes a long time is important for figuring out what’s
going on in the process. For example, issue report KAFKA-
500020 requests regular progress information to be logged
for a long process so that one can know whether the process
is progressing or stuck.

“Communicate liveness and progress, which may be otherwise
hard to indicate (i.e., what is my process doing now?)” [S]

Monitoring & Alerting. Logs can alert developers and users
for problems or anomalies during system execution, in real-
time [2] or postmoterm analysis [2, 7, 36]. For example,
issue report HADOOP-1290121 requests to log a “warn”
message when a client fails to connect to a server, so that
users can easily identify and fix the connection problem.
Anomaly detection tools [7, 13, 36] automatically analyze
large amounts of log messages (that are hard for human
beings to investigate manually) and alert anomalies that are
indicated in the log messages.

Logging statements are also used to record the per-
formance information of a system at runtime (a.k.a., per-

13. https://issues.apache.org/jira/browse/HIVE-11163
14. https://issues.apache.org/jira/browse/KAFKA-4164
15. https://issues.apache.org/jira/browse/HADOOP-13682
16. https://issues.apache.org/jira/browse/HIVE-11314
17. https://issues.apache.org/jira/browse/HADOOP-10046
18. https://issues.apache.org/jira/browse/HADOOP-10657
19. https://issues.apache.org/jira/browse/HIVE-14263
20. https://issues.apache.org/jira/browse/KAFKA-5000
21. https://issues.apache.org/jira/browse/HADOOP-12901

8

TABLE 4
The categories of logging benefits derived from the survey responses and the issue reports. The column “Quote” shows an example quote for the

corresponding category which is extracted from the survey responses (“[S]”) or the issue reports (“[I]”); the column “Freq(S/I)” shows the
frequencies of the corresponding category in the survey responses (“S”) and the issue reports (“I”); the column “Ref./New” lists literature that

observes or discusses a related concept, or indicates a new category that has never been observed nor discussed in prior work.

Benefit Quote Freq(S/I) Ref./new

Diagnosing runtime failures 35/28
Configuration error diagnosis “Logging application configurations reveals errors caused by misconfigura-

tions”[S]
2/2 New

Field failure diagnosis “Easier to find the root cause if there is a bug or system failure”[S] 28/18 [2, 5]
Test failure diagnosis “During integration and end-to-end testing or manual testing the logged excep-

tion stack traces often immediately reveals the cause of a test failure”[S]
2/2 New

Diagnosing performance issues “See performance impact”[S] 1/4 [5, 6]
Diagnosing security access issues “During Dev stage, logs help mainly on UT stages, integration with other

systems, identifying access issues”[S]
1/2 New

Triaging failures “To be able to figure out the responsibility if something goes wrong”[S] 1/0 [2]

Using logs as a debugger 39/38
Generic debugging “Help identify the root cause of the problems”[S] 19/30 New

Production debugging “When users report bugs, we want to collect more info about the state in which
bugs happens”[S]

12/3
[2, 5]

[38, 39]
[41, 43]

Development-time debugging “During Dev stage, logs help mainly on UT stages”[S] 8/5 New

Users/customer support 8/8
Enabling user troubleshooting “Enable users troubleshooting by themselves”[S] 6/6 New
Increasing usability “It increases the framework usability via feeding user with important informa-

tion”[S]
2/2 New

Tracking execution progress 13/9
Tracking execution progress

(immediate feedback) “They are very important to track the workflow”[S] 8/5 New

Providing ongoing event status “It often makes sense to periodically log some ongoing event status”[S] 3/4 New
Checking liveness of the system “If users ever feel ’why is it taking so long, is it even doing something?’ , they

could check log to see if it is doing something”[S]
2/0 New

Monitoring & Alerting 11/16
Real time alerting “Things that are fatal should always be logged to help with quick debugging”[S] 4/0 [2]
Anomaly indicator “An analyzing of logs can you discover bugs before your soft will be de-

ployed”[S]
5/16 [2, 7, 36]

Enabling tool monitoring “Monitoring logs by external tools allows to integrate alerts based on presence
of WARN/ERROR statements at logs”[S]

2/0 New

Performance monitoring “We should log a warning message if group resolution takes too long”[I] 0/5 [2, 13]
[19, 37]

System comprehension 45/17
Code familiarization “Logging statements provide additional insights when reading the code, and are

equally or even more useful than code comments”[S]
2/0 New

System runtime familiarization
Understanding the dynamics

of a scenario “Being able to establish the temporal order of things when it’s hard to do so in
the IDE”[S]

12/1 New

Understanding the major events
at run-time “I use logging show when ’key’ events happen in a system”[S] 6/3 New

Providing context of events “I add this one for the information why decision was made”[S] 10/13 New
Communicating internal state “Main benefit is to provide information about system state, i.e. printing values

of fields of a class, printing the result of a computation”[S]
10/0 New

Verifying behaviors vs. expectations “I want to know that software executes the path that I intended/assumed”[S] 5/0 New

Assisting in developing software 4/2
Easing developing software “During POC logs allows you to make better decisions when and how to use

alternative components or alternative flows”[S]
3/1 New

Better coding practice “Some developers just use STDOUT and STDERR. I don’t think I need to tell
you why that is a bad idea”[S]

1/1 New

Bookkeeping 9/4
Gathering statistics of

run-time events “The main benefit of logging I see is an availability to log any needed data in a
free form for subsequent analyzing”[S]

4/1 [2, 16]
[27, 35]

Auditing “Auditing (’WHO?’ - and ’WHAT?’) - it’s sometimes a bit outside of the logging
context, but many cases data can be gathered through a log parser/shipper”[S]

5/3 [30, 42]

formance monitoring) [2, 19, 37]. Such performance in-
formation is usually related to the execution time or re-
source usage of a process. For example, issue report HIVE-
1492222 requests the logging of the time spent in several
performance-critical tasks, and issue report KAFKA-4044

22. https://issues.apache.org/jira/browse/HIVE-14922

requests the logging of the actually used buffer size. Such
performance information helps in understanding system
health (e.g., HIVE-821023), tuning system performance (e.g.,
HADOOP-1330124), and adjusting resource allocation (e.g.,

23. https://issues.apache.org/jira/browse/HIVE-8210
24. https://issues.apache.org/jira/browse/HADOOP-13301

9

KAFKA-404425).

4.2.3 Assisting in comprehension

System comprehension. In addition to providing clues for
resolving problems and tracking execution status, logs also
help developers get familiar with the source code (i.e.,
functioning like comments) and the runtime behaviors of
a system when there are no failures (e.g., the ordering of
events). Besides, logs can help developers verify the system
runtime behaviors against the expected behaviors.

“The logs need to tell a story.” [S]

“Logging statements provide additional insights when read-
ing the code, and are equally or even more useful than code
comments.” [S]

Assisting in developing software. Logs can actually make
developing software easier. During the development pro-
cess, developers can get insights from logs to evaluate
the execution flows and make better software development
decisions.

“These might give valuable insights on the lack of quality
within the own code logic or documentation or give hints on
a lack of considerations when designing (or implementing) the
application to start with.” [S]

4.2.4 Bookkeeping

Bookkeeping. Developers can use log messages to record
(i.e., bookkeep) important transactions or operations in a
system execution, such as user login/logout, database oper-
ations, and remote queries and requests. Such bookkeeping
log information can be later processed for various analysis
activities, such as security analysis [27], performance anal-
ysis [35], and capacity planning [16]. The Sarbanes-Oxley
Act of 2002 [30] requires all telecommunication and financial
applications to log some mandatory log events, such as user
activities, network activities and database activities26.

“Logging may act as business-operation metering provider.”
[S]

: Summary of RQ1

Developers consider a wide range of logging ben-
efits, covering the dimensions of troubleshooting,
tracking, comprehension, and bookkeeping. While
some logging benefits are discussed in prior studies,
most of our newly uncovered benefits of logging
have never been observed nor discussed in prior
studies. Fully understanding the benefits of logging
can help developers make better use of logging
(e.g., to enable customers to solve problems them-
selves using logs). The uncovered benefits of logging
also inspire new research opportunities on logging
improvement (e.g., to improve logging for system
comprehension).

25. https://issues.apache.org/jira/browse/KAFKA-4044
26. https://sarbanes-oxley-101.com/sarbanes-oxley-audits.htm

4.3 Costs of Logging
Table 5 summarizes the costs of logging that we derived
from the survey responses and the issue reports. In total,
we derived nine main categories of logging costs, which fall
into four broader themes: costs of managing and processing
large log data, impacting system behaviors, direct negative
impact on users, and increasing development efforts. In
the rest of this sub-section, we present the main categories
of logging costs under each theme.

4.3.1 Costs of managing and processing large log data
Storage cost. Excessive logging can lead to expensive stor-
age costs [2, 6]. Excessive log information is usually caused
by repetitive log messages, such as logging database oper-
ations on every row of a table (e.g., HIVE-8153), logging
every entry (e.g., KAFKA-379227), logging every request
(e.g., KAFKA-373728), or logging every user (e.g., HADOOP-
1245029). In particular, repetitive logging of stack traces
usually grows the log files very fast and frustrates the end-
users. For example, issue report HADOOP-1186830 raises a
major concern about the excessive logging of stack traces for
invalid user logins.

“Also because there are already too many log-generating in
Hadoop, we can easily have hundreds of GB logs single cluster
per day.” [S]

Producing noise that hides important information. Exces-
sive logging can also make it hard to “sift through the noise
to find out what is actually important when diagnosing a
failure”. In particular, logging normal events or properly
handled problems at the “warn” or “error” levels can spam
the log files with “warn” or “error” messages and make it
difficult to identify real problems (e.g., HIVE-838231).

“Too much log kills the logs.” [S]

Effort on log collection, processing and management. For
large software systems, excessive logging also increases the
effort for collecting, processing, and managing logs [2, 5,
6]. In particular, consuming a large volume of logs from
different sources is difficult [2].

“Aggregation, cross-referencing, and searching through logs
is hard.” [S]

4.3.2 Impacting system behaviors
Performance overhead. Performance overhead is consid-
ered as a major cost of logging [6, 39, 41, 42, 43], as printing a
log message into a log file involves expensive IO operations,
string concatenations, and possible method invocations for
generating the log strings. One cause of performance over-
head is overwhelmingly repetitive printing of similar log
messages. For example, issue report HIVE-1231232 com-
plains that the compilation of a complex query significantly
slowed down as a code snippet with a logging statement
is called thousands of times. The execution process was
speeded up by 20% after disabling the logging statement.

27. https://issues.apache.org/jira/browse/KAFKA-3792
28. https://issues.apache.org/jira/browse/KAFKA-3737
29. https://issues.apache.org/jira/browse/HADOOP-12450
30. https://issues.apache.org/jira/browse/HADOOP-11868
31. https://issues.apache.org/jira/browse/HIVE-8382
32. https://issues.apache.org/jira/browse/HIVE-12312

10

TABLE 5
The categories of logging costs derived from the survey responses and the issue reports.

Cost Quote Freq(S/I) Ref./new

Storage cost “Log can fill your disk *very* quickly”[S] 27/11 [2, 6]

Producing noise that hides important
information

“Too much verbose logging makes it difficult to find useful information”[S] 40/38 New

Effort on log collection, processing and
management

10/16

Effort for log processing “Consumption is difficult. Aggregation, cross-referencing, and searching
through logs is hard”[S]

7/1 [2, 6]

Effort on log collection &
management “There is the management overhead of keeping and archiving log files etc.”[S] 3/13 [5, 6]

Missing logging info that
causes extra effort “Currently we don’t log exceptions raised when reading from the local log which

makes tracking down the cause of problems a bit tricky”[I]
0/2 New

Performance overhead “Affects running speed of cpu and memory”[S] 44/10 [6, 39, 41]
[42, 43]

Perturbing system behaviors “When you observe a system, you are perturbing it”[S] 2/5 [4, 9]

Confusing users 8/88
Incorrect severity level that

causes confusion “Logging with the incorrect severity level can result in confused users thinking
there is something terribly wrong when in actuality things are normal”[S]

4/27 [4, 9, 21]

Unnecessary exceptions for
normal situations “This causes the error stream handling thread to log an exception backtrace for

a ’normal’ situation”[I]
0/7 New

Not actionable info “Some costs of logging are the parsing of un-meaningful statements”[S] 3/12 New
Unnecessary support cost “We eliminated some logging output just because people were scared. Some-

times we even get support calls on DEBUG output”[S]
1/0 New

Incorrect logging info “When printing out a Struct, we don’t print out the content wrapped in an array
properly”[I]

0/19 [4, 9, 22]

Incorrect documentation of logging “Description of hive.server2.logging.operation.level states that this property is
available to set at session level. This is not correct”[I]

0/4 New

Inconsistent logging info that
causes confusion “If ’closing connection’ is logged, it is better to also log the ’creating connection’

event, otherwise the ’closing connection’ log would not be very useful”[I]
0/4 New

Missing logging info that
causes confusion “When the filter on DelegationTokenAuthenticationFilter is called it hits an

exception there and there is no log message there. This leads to the confusion
that we have had a success while the exception happens in the next class”[I]

0/15 New

Exposing sensitive information “Logs may ... expose some sensitive data”[S] 2/9 New

Logging code development and main-
tenance cost

13/30

Effort on maintenance of
logging code “Logs can create additional bugs”[S] 7/24

[3, 6, 14]
[15, 22]
[32, 40]

Slow down development / effort of
using logging API & management “The biggest cost of logging is probably setting up an implementation and

configuring something like Log4j”[S]
6/6 New

Decreasing code readability “I think it decreases code readability and quality when there are a lot of log
statement between the main logic”[S]

6/1 New

Another cause of performance overhead is the invocation of
expensive methods in logging statements. For example, is-
sue report HADOOP-1436933 complains that including some
method calls in logging statements is “pretty expensive”.
Surprisingly, even disabled lower level logging can cause
serious performance overhead, because the parameters of a
logging statement are evaluated before the check for the log
level. For example, issue KAFKA-299234 reports that “trace”
logs in tight loops cause significant performance issues even
when “trace” logs are not enabled.
Perturbing system behaviors. Logging code is usually con-
sidered as “side code” (i.e., the code that won’t impact
the normal behaviors of a software system). However, our
survey respondents also mentioned that logging can criti-
cally impact the functional behaviors of a software system.
Prior work also observed that logging issues can cause

33. https://issues.apache.org/jira/browse/HADOOP-14369
34. https://issues.apache.org/jira/browse/KAFKA-2992

system runtime failures (e.g., triggering a NullPointerExcep-
tion) [4, 9].

“There is a real possibility that logging effects the core
operation, a logging bug that only shows up when trying to
troubleshoot another issue can be critical.” [S]

4.3.3 Direct negative impact on users
Confusing users. As log messages are directly exposed to
end-users, inappropriate log information can be confusing
and misleading [4, 9, 21, 22]. In particular, logging “warn”
or “error” messages for successful operations is the most
frequent cause for this concern. For example, HADOOP-
1369335 complains that a warning in a successful operation
confuses end-users. Even worse, sometimes inappropriate
log messages can annoy or frustrate end-users. For exam-
ple, HADOOP-1355236 complains that there are too many

35. https://issues.apache.org/jira/browse/HADOOP-13693
36. https://issues.apache.org/jira/browse/HADOOP-13552

11

“scary-looking” stack traces being printed out in the log
files, but in fact those exceptions can be handled auto-
matically. Such large amount of repetitive stack traces can
frustrate (e.g., HIVE-1106237) or annoy (e.g., HIVE-773738)
end-users.

Inconsistent logging can also cause user confusion. For
example, when the creation of a certain object (e.g., a table)
is logged, the deletion of the object should also be logged.
Otherwise one cannot confirm if the object still exists (e.g.,
HIVE-1305839). Similarly, “waiting for lock” should be fol-
lowed by “lock acquired” (HIVE-1426340), while “start of
process” should be followed by “end of process” (HIVE-
1278741).
Exposing sensitive information. Sensitive information (e.g.,
usernames and passwords) should not be printed in log
files. Once such sensitive information is logged, it might
be archived for years and cannot be tampered with due
to legal regulations. However, sometimes such sensitive
information might end up logged by mistakes. For ex-
ample, issue reports HIVE-1409842 complains that users’
passwords are logged in cleartext. In particular, developers
have difficulties to avoid logging sensitive information that
is contained in an URL, e.g., user names and passwords
(HIVE-1309143), or a user configuration field, e.g., cloud
storage keys (HADOOP-1349444). Developers may log the
content of a URL or a configuration field without noticing
the contained sensitive information. In particular, users may
put their sensitive information in an unknown configuration
field that is caused by a typo. In such a case, developers are
likely to log the unknown configuration field (i.e., to alert
the unknown configuration) and unintentionally expose
users’ sensitive information (e.g., KAFKA-405645).

4.3.4 Increasing development efforts

Logging code development and maintenance cost. First,
the costs for developing and maintaining logging code
come from “setting up an implementation and configuring
something like Log4j” and “constant arguing whether cer-
tain log-lines need to be INFO, DEBUG or whatever with
colleagues”. Second, developers need to constantly evolve
their logging code to keep it updated with the evolving
business logic of the source code [15]. In fact, prior studies
[3, 14, 15, 22, 32, 40] find that developers spend much effort
updating their logging code.
Decreasing code readability. In Section 4.2, we mentioned
that logging (functioning like comments) can help devel-
opers better understand the source code. However, it is
interesting that other survey respondents complained that
logging can also decrease the readability of other code.

“Apart from those, I find it harder to read the code when too
many log statements are sprinkled into the code.” [S]

37. https://issues.apache.org/jira/browse/HIVE-11062
38. https://issues.apache.org/jira/browse/HIVE-7737
39. https://issues.apache.org/jira/browse/HIVE-13058
40. https://issues.apache.org/jira/browse/HIVE-14263
41. https://issues.apache.org/jira/browse/HIVE-12787
42. https://issues.apache.org/jira/browse/HIVE-14098
43. https://issues.apache.org/jira/browse/HIVE-13091
44. https://issues.apache.org/jira/browse/HADOOP-13494
45. https://issues.apache.org/jira/browse/KAFKA-4056

: Summary of RQ2

While too much logging can increase the cost of man-
aging & processing large log data and impact system
runtime behaviors (e.g., performance), logging has
a more direct impact on developers (i.e., increasing
development and maintenance efforts) and users
(i.e., confusing users and exposing users’ sensitive
information). Developers need to fully understand
the costs of logging in order to avoid unnecessary
negative impact (e.g., exposing users’ sensitive in-
formation). Future research also needs to be aware
of the wide range of logging costs when developing
automated logging strategies.

4.4 Balancing the Benefits and Costs of Logging
Table 6 summarizes the approaches for balancing the ben-
efits and costs of logging that we derived from the survey
responses and the issue reports. In total, we derived nine
main categories of approaches, which fall into four broader
themes: differentiating logging, where to log, reducing
logging impact, and improving logging quality. In the rest
of this sub-section, we present the main categories of the
approaches under each theme.

4.4.1 Differentiating logging
Appropriate log levels. The most common approach for
balancing the benefits and costs of logging is to assign
appropriate log levels for logging statements with different
levels of importance [4, 6, 9, 21, 27, 40], which also comes
with configuring the appropriate log levels when running
a software system. In particular, supporting dynamic con-
figuration of log levels (e.g., using JMX) provides better
flexibility for developers and users to tradeoff between
logging benefits and costs (i.e., on the fly).

“Use different log levels: Log exceptions, missing configura-
tion properties as error or warning, api calls at server side
and some relevant parameter values (like ids) as info, state of
internal (package level) objects as debug or trace.” [S]

There is a strong need for the support of logging different
parts (in particular, stack traces) of a logging statement
at different log levels, which is not supported by modern
logging libraries. Many issue reports suggest, for a single
event, to log the regular log text at a higher level (e.g.,
“error”) and the stack trace at a lower level (e.g., “debug”),
such that the stack traces are hidden in normal cases and
only printed out when needed (e.g., HADOOP-1366946). It is
also suggested to log the important information of an event
at a higher level, while logging the detailed information of
the same event at a lower level (e.g., KAFKA-119947).

Differentiate different logging purposes. In addition to
using different log levels, developers also suggested other
approaches to differentiate different logging purposes, e.g.,
using different loggers. For example, it is suggested to log
performance information using standardized performance

46. https://issues.apache.org/jira/browse/HADOOP-13669
47. https://issues.apache.org/jira/browse/KAFKA-1199

12

TABLE 6
The categories of approaches for balancing the benefits and costs of logging (derived from the survey responses and the issue reports).

Approach Quote Freq(S/I) Ref./new

Appropriate log levels 30/53

Developing right log levels “Use the proper levels of logs, make sure this information would be relevant for either monitoring or
debugging”[S]

14/26 [4, 9, 21]
[27, 40]

Evaluating and refactoring log levels “We tend to leave most of logging statements added when initially writing a code, and maybe just
decrease logging level when merging the final version of code”[S]

6/16 [6]

Configuring right levels in system
deployment “Running the application with the right log levels”[S] 4/9 New

Supporting dynamic configuration
of log levels “By utilizing the power of JMX we are able to update the log configuration at runtime for certain classes

and thus modify the output produced by logs”[S]
4/2 New

More debug logs and less production
logs “Lots of debug level logs, because it helps when in dev. Way, way less log for production, just the

minimum needed to understand where an error is coming from.”[S]
2/0 New

Differentiating different logging pur-
poses

10/8

Failing loudly “When something crashes out- it should be apparent and easy to find”[S] 1/1 New
Adding format to help post filter “Adding some meaningful prefixes makes it easier to grep logs”[S] 2/3 New
Considering user experience of logs “Maintain a human-processable picture of the scenario played through with both INFO and DEBUG

level activated”[S]
7/1 New

Using different loggers for different
purposes “Perflogger should log under single class, so that it could be turned on without mass logging spew”[I] 0/3 New

Proactively determining appropriate
scope/focus of logging

33/17

Logging uncommon/unexpected
situations “I put logs only to unusual and interesting cases, when some special event can happen”[S] 11/5 [8, 12, 44]

Logging important events / state
changes “I only log key events that I feel are important to applications/systems (usually some type of state

change)”[S]
8/10 New

Project/team specific style/rules “I tend to go with the flow (of the existing project) and try to be a Good Scout”[S] 1/2 [2, 28]
Other tips for where (not) to log “Over-logging is way better than no logging at all”[S] 13/0 New

Reactive logging 14/22
Adding logs over time on demand “In cases where the traceability of logs for a certain error case isn’t given or optimal we introduce new

logs over time or adapt the logging level of existing logs”[S]
6/11 New

Logging buggy places “In places were we had some bugs, we add additional logging when performing the fix”[S] 6/2 New
Following a logging budget “Adjust the amount of log by trial and error”[S] 2/1 [6, 43]
Removing unnecessary logs “Remove unnecessary log line in common join operator”[I] 0/8 [6]

Minimizing repeated logging 10/14
Avoiding logging in frequent

operations “Avoid logging for every iteration in case of loops to ensure it doesn’t slow down the executioNewppli-
cation”[S]

3/5 [6]

Avoiding duplicate logging
statements “I try to log every exception only once: do not log and rethrow the same exception in the same catch

block but log it if it is not rethrown”[S]
5/5 New

Aggregating log messages “For repeated actions, such as in a loop, aggregate together and log”[S] 2/4 New

Considering logging impact 10/7
Do not change program behaviour “Logging shouldn’t give a chance to fail application”[S] 1/1 New

Keeping performance impact in mind “The impact from a performance point of view needs to be fully understood”[S] 7/6 [6, 39]
[41, 43]

Performance is not a problem “Slowdowns is not so important”[S] 2/0 New

Ensuring quality of logging code 6/58
Manually testing the logging code
before deploying system-wide “Performance testing and simply observing and thinking about noise level in the logs are two things

that are done while testing and in code reviews”[S]
4/1 New

Using unit tests for logging code “Unit tests can reveal logging statement issues”[S] 1/1 New
Redacting/masking sensitive info “Anonymize passwords before logging”[I] 0/8 New
Providing appropriate context

Correlation IDs “It would be useful to log the correlation id of cancelled inflight requests”[I] 0/17 [28]
Exceptions “This is not useful to understand the underlying cause. The WARN entry should additionally include

the exception text”[I]
0/8 New

Error details “We should log a better message, to include more details (e.g. token type, username, tokenid) for trouble-
shooting purpose”[I]

0/13 New

Other context “Logging minimally, but providing as much context as possible”[S] 1/7 New
Ensuring logging consistency

Symmetric logging “When connecting to HS2, we can confirm that some directories were created... But when closing from
HS2, we cannot confirm that these directories were deleted. So I change it so that some messages about
these directories deletion may be output as follows.”[I]

0/2 New

Consistency between logging
guard and statement “Fix inconsistency between log-level guards and statements”[I] 0/1 New

Using advanced tooling to support log-
ging

23/20

Leveraging advanced logging
libraries “Use clever and efficient loggers to skip log statements that are disabled”[S] 6/8 [9, 14]

Runtime throttling “Throttling is probably the most powerful trick. Instead of logging a message directly, we add a helper
class to track how much log are generated during the time, do some in-place aggregation and log only
the aggregate results”[S]

2/1 New

Using NOP loggers “I don’t use logging:-) Or rather I use nop loggers”[S] 1/0 New
Rotating/cleaning logs “Rotating the logs to keep only the most relevant logs”[S] 4/5 [2, 6]
Using log processing tools “Using tools like Splunk to store and search logs”[S] 3/0 [2]
Leveraging structured logging “Structured log messages e.g. JSON can help counteract the complexity, making logs amenable to

automated analysis”[S]
3/0 New

Leveraging logging guard “Do not overuse log statements, use ifLoggable() to keep performance impact down”[S] 4/6 New

High configurability of logging 0/18
Enabling turning on/off certain logs

independently “Provide a way to to independently configure perflogger and root logger levels”[I] 0/7 [2]

Enabling turning on/off stack traces “Provide an option for IPC server users to avoid printing stack information for certain exceptions”[I] 0/1 New
Simplicity of configurations “Our customer always want simple log4j configurations”[I] 0/1 New
Configurability of log locations “Add KAFKA LOG DIR to allow LOG DIR to be outside of code dir”[I] 0/9 New

13

loggers to separate performance logging from event logging,
for better performance analysis (e.g., HIVE-1189148).

“Sometimes we configure loggers to write statements with
level higher then DEBUG into one file, and all statements to
another file, with different log rotation settings. Audit log is
at a separate file.” [S]

4.4.2 Where to log
Developers combine proactive and reactive strategies to
determine where to log.

Proactively determining appropriate scope/focus of log-
ging. Prior work proactively adds additional log informa-
tion in the source code [39, 41, 43] or learns statistical
models to suggest where to log [12, 20, 44]. In our qualitative
study, developers highlighted the importance of logging
uncommon/unexpected situations (e.g., when an error hap-
pens) [8, 12, 44] and logging important events/state changes
(e.g., when a connection is created). Besides, developers also
suggested that logging should follow project or team-wise
styles [2, 28].

“Make sure it has value (such as an error happens, a
connection is created, etc.)” [S]

Reactive logging. In addition to proactively determining
where to log, developers also highlighted the need to update
logging over time (i.e., reactively) as appropriate logging is
difficult to achieve in the first place. Developers gradually
add logging on demand or at buggy places. However,
logging should follow a budget [6, 43], and unnecessary logs
need to be removed [6].

“You should do improvement your logging step by step just
like you do refactoring of code.” [S]

4.4.3 Reducing logging impact
Minimizing repeated logging. Developers suggested ap-
proaches to reduce logging impact by minimizing repeated
logging. First of all, inserting logging statements in tight
loops is considered as a bad logging practice [6]. It is also
suggested to aggregate highly repetitive log messages, for
example, by logging aggregated information at a higher log
level and detailed information at a lower log level (e.g.,
HIVE-1021449 and KAFKA-482950). Developers also need
to be cautious when throwing and logging an exception at
the same time51, because it may lead to duplicated logging
as the handler of the exception may log the exception
again [25, 34] (e.g., KAFKA-159152).

Considering logging impact. Developers suggested to al-
ways consider the impact of logging, in particular, per-
formance impact, when making logging decisions. Prior
work [6, 39, 41, 43] also considered the performance impact
of logging when automatically adding logging information
in the source code. However, logging can cause performance
problems for some software systems but not for others.

48. https://issues.apache.org/jira/browse/HIVE-11891
49. https://issues.apache.org/jira/browse/HIVE-10214
50. https://issues.apache.org/jira/browse/KAFKA-4829
51. https://www.loggly.com/blog/logging-exceptions-in-java/
52. https://issues.apache.org/jira/browse/KAFKA-1591

“The impact from a performance point of view needs to be
fully understood.” [S]

4.4.4 Improving logging quality

Ensuring quality of logging code. The quality of the
logging code impacts the benefits and costs of logging.
Logging statements without enough context information
(e.g., correlation IDs [28]) may hinder their usefulness. For
example, developers suggested to add more context infor-
mation (e.g., thread ID, session ID, query ID and user ID) in
the logging statements of a multi-task program (e.g., HIVE-
1351753, HIVE-1148854, KAFKA-381655, HIVE-1563156 and
HIVE-687657).

As discussed in Section 4.3, logging statements with in-
appropriate content may confuse end-users. Logging state-
ments even can cause additional bugs [4, 9]. Therefore, it is
suggested to carefully test the logging code before releases.

Using advanced tooling to support logging. Another di-
rection to improve logging quality is to leverage advanced
logging tooling, such as advanced logging libraries (e.g.,
SLF4J) [9, 14] and logging processing tools (e.g., Splunk) [2].
As discussed in Section 4.3, even when a logging statement
with a lower level is disabled, it still can have some perfor-
mance overhead that is caused by the evaluation of the log-
ging statement’s parameters (e.g., concatenation of logging
strings), as the parameters are evaluated before the logging
method checks the log level. Advanced logging libraries
(e.g., SLF4J) have recently started to support parameterized
logging statements58. Parameterized logging statements delay
the concatenation of logging strings until after checking if
the log level is enabled, thereby avoiding unnecessary string
concatenation when a log level is disabled. As a result, de-
velopers start to replace logging guards with parameterized
logging (e.g., issue report HADOOP-1331759).

“We recently tansition to slf4j so can do parameterized
logging removing if LOG.LEVEL.X gateway checks.” [S]

High configurability of logging. Developers also sug-
gested enhancing the configurability of logging, such as
enabling turning on/off certain logs independently and en-
abling turning on/off stack traces. For example, issue report
HADOOP-871160 suggests to provide an option for users
to suppress the stack traces triggered by certain exceptions.
Prior work [2] also pointed out the need for the support of
turning on/off logs at a fine granular level.

53. https://issues.apache.org/jira/browse/HIVE-13517
54. https://issues.apache.org/jira/browse/HIVE-11488
55. https://issues.apache.org/jira/browse/KAFKA-3816
56. https://issues.apache.org/jira/browse/HIVE-15631
57. https://issues.apache.org/jira/browse/HIVE-6876
58. https://logging.apache.org/log4j/2.x/performance.html
59. https://issues.apache.org/jira/browse/HADOOP-13317
60. https://issues.apache.org/jira/browse/HADOOP-8711

14

: Summary of RQ3

Developers balance the benefits and costs of logging
in an ad hoc manner. In addition to proactively deter-
mining where to log, developers highlight the need for
logging reactively on demand. Besides, developers
consider various ad hoc strategies that aim to dif-
ferentiate logging purposes, reduce logging impact,
and improve logging quality. We encourage log-
ging library providers and researchers to put efforts
into improving current ad hoc logging practices. For
example, logging library providers could improve
their logging libraries by providing more flexible
logging options (e.g., to support different log levels
for different parts of a logging statement).

5 IMPLICATIONS

Developers consider a diverse range of benefits and costs
when making their logging decisions. Prior work only
considers a few developers’ logging considerations (e.g.,
the benefits of field failure diagnosis [2, 5], or the costs of
performance overhead [6, 39, 41, 42, 43]). In comparison, this
work provides a full picture of developers’ logging consid-
erations. As discussed in sections 4.2 and 4.3, we observe
that developers consider a wide range of logging benefits
and costs. Some of the logging benefits (e.g., user/customer
support) and costs (e.g., exposing sensitive information) are
considered by neither prior studies nor most of the survey
respondents. Developers need to be fully aware of the bene-
fits and costs of logging, in order to leverage logging better
(e.g., to improve user/customer support with logs) and
avoid unnecessary negative impact (e.g., exposing users’
sensitive information). Future research needs to consider the
wide range of logging benefits and costs when developing
automated logging strategies. Our uncovered logging bene-
fits and costs also inspire future research opportunities for
filtering logging statements by their different benefits and
costs, for example, to keep only the logging statements that
are necessary for diagnosing runtime failures.
Developers have conflicting views about the benefits and
costs of logging. As discussed in Section 4.3, performance
overhead is the logging cost that is mentioned by most devel-
opers in our survey. However, as discussed in Section 4.1,
some developers are not concerned about the performance
overhead that is caused by logging and argue that “it
makes sense to log as much as possible”. Some developers
mention that logging statements can help understand the
source code (i.e., code familiarization in Table 4), while others
argue that logging statements decrease code readability (see
Table 5). Some developers claim that logging can assist in
developing software (see Table 4), while others complain about
the logging code development and maintenance cost. Therefore,
the benefits and costs of logging need to be considered
within the specific context of applications.
Developers balance the benefits and costs of logging in
an ad hoc manner. It is challenging for developers to write
appropriate logging code in the first place [3, 21, 22, 40].
Thus, developers usually maintain their logging code by

continuous trials-and-errors. For example, developers usu-
ally reactively add logging statements on demand (i.e., reac-
tive logging in Table 6). They also constantly re-evaluate and
refactor log levels over time (i.e., evaluating and refactoring
log levels in Table 6). Besides, developers’ strategies for
balancing the benefits and costs of logging are usually based
on subjective judgment. For example, considering logging
impact (see Table 4) is subject to each developer’s judgment
of logging impact. It is still a big challenge that lies in
front of researchers and developers to derive systematic
guidelines for logging. Future research is encouraged to
help developers improve current ad hoc logging practices,
for example, to help developers estimate and reduce the
negative impact of logging, or to help developers improve
the quality of logging). Future work is also encouraged to
explore the idea of integrating logging considerations in
early software design, in order to reduce the ad hocness of
logging. For example, logging budget can be allocated for
each subsystem/component during architecture design.
Developers need higher flexibility from logging libraries.
As discussed in Section 4.4, developers need support for
logging different parts (in particular, stack traces) of a log-
ging statement at different log levels, which is not supported
by modern logging libraries. Developers also highlight the
importance of supporting dynamic configuration of log levels
and high configurability of logging in general. Besides, in order
to reduce logging impact, developers need supports for
aggregating log messages and runtime throttling (see Table 6).
Currently, developers use workarounds to mitigate the lack
of support from logging libraries. For example, in order to
log different parts of a logging statement at different levels,
developers usually need to insert two separate logging
statements at different log levels for a single event (e.g.,
HADOOP-1186861). In order to save developers’ logging
efforts, we suggest that logging library providers consider
such developer needs for higher flexibility.

6 THREATS TO VALIDITY

External Validity. This paper studies the benefits and costs
of logging from the perspectives of the developers from
31 open source projects. The 31 open source projects are
mainly Java projects, as Java is well supported by many
good logging libraries and logging is a common practice
in Java projects [3]. Developers of other software projects
(e.g., closed source projects) may consider different aspects
of logging. In particular, the numerical representations of
the coding results (i.e., the frequencies of the codes) only
indicate the distributions in the received survey responses
and the studied issue reports. The 31 projects cover a
variety of domains, including big data, cloud computing,
database, network client/server, testing, build management,
web framework, content, and library. Therefore, our find-
ings may generalize to a much broader set of software
projects. However, findings from additional case studies on
other projects can benefit our study.

When investigating logging-related issue reports, we
consider three open source projects that have active de-
velopment and maintenance of logging code (e.g., with

61. https://issues.apache.org/jira/browse/HADOOP-11868

15

many logging-related issue reports). Having active logging
development and maintenance does not necessarily mean
these projects follow good logging practices. Nevertheless,
as logs generated by these projects are exposed to a wide
audience including many big tech companies, the quality of
logging might be critical to these projects. We consider all
the logging-related issue reports even though some of them
remain unfixed by developers. However, our goal is not to
find the root causes of the reported issues. Instead, we aim
to understand developers’ considerations of the benefits and
costs of logging that are communicated in the issue reports.
Future work is encouraged to study why some logging-
related issue reports are not fixed by developers.
Internal Validity. In this paper, we study developers’ log-
ging considerations through a developer survey and a case
study of logging-related issue reports. However, develop-
ers’ logging considerations may also be expressed in other
forms, such as requirement specifications or mailing-lists.
Therefore, our findings may not provide a complete view of
developers’ logging considerations. In our study, the devel-
oper survey provides us with developers’ general opinions
about their logging considerations, while the case study re-
veals developers’ logging considerations within the context
of specific issue reports. Besides, in the three subject projects
that we used for studying logging-related issue reports, an
issue report is always needed for every code commit. Thus,
we expect that our findings are representative of developers’
logging considerations that involve code changes.
Construct Validity. In order to obtain high-quality survey
responses, we selected those developers who changed at
least five logging statements as our survey participants.
We assumed that developers who changed a number of
logging statements are experienced in logging. Our selection
might miss developers who did not change as many logging
statements in the studied projects but in other projects.
Besides, our survey results may be biased by the 5% of the
surveyed developers who responded to our surveys. For
example, the developers who responded to our survey may
be more positive towards logging. Future surveys at a larger
scale could enhance our study.

We use qualitative analysis to study developers’ logging
considerations and how developers balance the benefits
and costs of logging. Like other qualitative studies, our
results may be biased by the individuals who conduct the
qualitative analysis. In order to reduce the bias, three and
four authors of the paper jointly performed the qualitative
analysis to derive high-level concepts from the survey re-
sponses and the logging-related issue reports, respectively.

7 CONCLUSION

In order to understand developers’ considerations of the
benefits and costs of logging and how they balance such
benefits and costs, we performed a qualitative study that
combines a survey of 66 developers and a case study of
223 logging-related issue reports. Our study uncovers a
wide range of logging benefits and costs. We also observe
that developers balance the benefits and costs of logging
in an ad hoc manner. Our findings provide insights for de-
velopers to improve their logging practices: to make better
use of logging (e.g., to enable customers to solve problems

themselves using logs) and avoid unnecessary logging costs
(e.g., exposing users’ sensitive information). Future work
on automated logging improvement should also consider
the wide range of logging benefits and costs. We encourage
logging libraries to support more flexible logging capabili-
ties, e.g., to support different log levels for different parts
of a logging statement. Our findings also shed light on
future research opportunities that help developers leverage
the benefits of logging while minimizing logging costs (e.g.,
to help developers estimate and reduce the negative impact
of logging).

REFERENCES

[1] R. Artstein and M. Poesio, “Inter-coder agreement for com-
putational linguistics,” Computational Linguistics, vol. 34,
no. 4, pp. 555–596, 2008.

[2] T. Barik, R. DeLine, S. Drucker, and D. Fisher, “The bones
of the system: A case study of logging and telemetry at
microsoft,” in 2016 IEEE/ACM 38th International Conference
on Software Engineering Companion, ser. ICSE Companion
’16, 2016, pp. 92–101.

[3] B. Chen and Z. M. (Jack) Jiang, “Characterizing logging
practices in java-based open source software projects – a
replication study in apache software foundation,” Empiri-
cal Software Engineering, vol. 22, no. 1, pp. 330–374, 2017.

[4] B. Chen and Z. M. Jiang, “Characterizing and detecting
anti-patterns in the logging code,” in Proceedings of the 39th
International Conference on Software Engineering, ser. ICSE
’17, 2017, pp. 71–81.

[5] J. Cito, P. Leitner, T. Fritz, and H. C. Gall, “The making
of cloud applications: An empirical study on software
development for the cloud,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE ’15, 2015, pp. 393–403.

[6] R. Ding, H. Zhou, J.-G. Lou, H. Zhang, Q. Lin, Q. Fu,
D. Zhang, and T. Xie, “Log2: A cost-aware logging mecha-
nism for performance diagnosis,” in 2015 USENIX Annual
Technical Conference, ser. ATC ’15, 2015, pp. 139–150.

[7] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly
detection in distributed systems through unstructured log
analysis,” in Proceedings of the 9th IEEE International Con-
ference on Data Mining, ser. ICDM ’09, 2009, pp. 149–158.

[8] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang,
and T. Xie, “Where do developers log? An empirical study
on logging practices in industry,” in Companion Proceedings
of the 36th International Conference on Software Engineering,
ser. ICSE Companion ’14, 2014, pp. 24–33.

[9] M. Hassani, W. Shang, E. Shihab, and N. Tsantalis, “Study-
ing and detecting log-related issues,” Empirical Software
Engineering, vol. 23, no. 6, pp. 3248–3280, 2018.

[10] A. F. Hayes and K. Krippendorff, “Answering the call for
a standard reliability measure for coding data,” Communi-
cation methods and measures, vol. 1, no. 1, pp. 77–89, 2007.

[11] P. He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the
natural language descriptions in software logging state-
ments,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’18,
2018, pp. 178–189.

[12] Z. Jia, S. Li, X. Liu, X. Liao, and Y. Liu, “Smartlog: Place er-
ror log statement by deep understanding of log intention,”
in Proceedings of the 25th IEEE International Conference on
Software Analysis, Evolution and Reengineering, ser. SANER
’18, 2018, pp. 61–71.

[13] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora,
“Automatic identification of load testing problems,” in
Proceedings of the 24th IEEE International Conference on Soft-
ware Maintenance, ser. ICSM ’08, 2008, pp. 307–316.

16

[14] S. Kabinna, C.-P. Bezemer, W. Shang, and A. E. Hassan,
“Logging library migrations: A case study for the apache
software foundation projects,” in Proceedings of the 13th
International Conference on Mining Software Repositories, ser.
MSR ’16, 2016, pp. 154–164.

[15] S. Kabinna, C.-P. Bezemer, W. Shang, M. D. Syer, and A. E.
Hassan, “Examining the stability of logging statements,”
Empirical Software Engineering, vol. 23, no. 1, pp. 290–333,
2018.

[16] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An
analysis of traces from a production mapreduce cluster,” in
Proceedings of the 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, ser. CCGRID ’10, 2010,
pp. 94–103.

[17] K. Krippendorff, “Computing krippendorff’s alpha-
reliability,” Retrieved from http://repository.upenn.edu/
asc papers/43, 2011, accessed 28 August 2019.

[18] ——, “Reliability,” in Content analysis: An introduction to its
methodology, fourth edition. Sage publications, 2019, ch. 12,
pp. 277–356.

[19] H. Li, T.-H. P. Chen, A. E. Hassan, M. Nasser, and P. Flora,
“Adopting autonomic computing capabilities in existing
large-scale systems: An industrial experience report,” in
Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, ser. ICSE-SEIP
’18, 2018, pp. 1–10.

[20] H. Li, T.-H. P. Chen, W. Shang, and A. E. Hassan, “Study-
ing software logging using topic models,” Empirical Soft-
ware Engineering, vol. 23, no. 5, pp. 2655–2694, 2018.

[21] H. Li, W. Shang, and A. E. Hassan, “Which log level should
developers choose for a new logging statement?” Empirical
Software Engineering, vol. 22, no. 4, pp. 1684–1716, 2017.

[22] H. Li, W. Shang, Y. Zou, and A. E. Hassan, “Towards just-
in-time suggestions for log changes,” Empirical Software
Engineering, vol. 22, no. 4, pp. 1831–1865, 2017.

[23] Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan, and S. Li,
“Which variables should i log?” IEEE Transactions on Soft-
ware Engineering, 2019.

[24] D. Lo, N. Nagappan, and T. Zimmermann, “How prac-
titioners perceive the relevance of software engineering
research,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2015,
2015, pp. 415–425.

[25] A. Newman, “Logging exceptions in java: Don’t log and
throw,” Retrieved from https://www.loggly.com/blog/
logging-exceptions-in-java/, 2015, accessed 28 August
2019.

[26] N. Nurmuliani, D. Zowghi, and S. P. Williams, “Using
card sorting technique to classify requirements change,”
in Proceedings of the 12th IEEE International Requirements
Engineering Conference, ser. RE ’04, 2004, pp. 240–248.

[27] A. Oliner, A. Ganapathi, and W. Xu, “Advances and chal-
lenges in log analysis,” Commun. ACM, vol. 55, no. 2, pp.
55–61, 2012.

[28] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo,
“Industry practices and event logging: Assessment of a
critical software development process,” in Proceedings of
the 37th International Conference on Software Engineering, ser.
ICSE ’15, 2015, pp. 169–178.

[29] G. Rugg and P. McGeorge, “The sorting techniques: a
tutorial paper on card sorts, picture sorts and item sorts,”
Expert Systems, vol. 22, no. 3, pp. 94–107, 2005.

[30] P. Sarbanes, “Sarbanes-Oxley Act of 2002,” in The Public
Company Accounting Reform and Investor Protection Act,
2002.

[31] M. Sayagh, N. Kerzazi, and B. Adams, “On cross-stack
configuration errors,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE ’17, 2017, pp.
255–265.

[32] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W.

Godfrey, M. Nasser, and P. Flora, “An exploratory study
of the evolution of communicated information about the
execution of large software systems,” Journal of Software:
Evolution and Process, vol. 26, no. 1, pp. 3–26, 2014.

[33] D. Spencer, Card sorting: Designing usable categories. Rosen-
feld Media, 2009.

[34] Stack Overflow Community, “Why is ”log and
throw” considered an anti-pattern?” Retrieved
from https://stackoverflow.com/questions/6639963/
why-is-log-and-throw-considered-an-anti-pattern, 2011,
accessed 28 August 2019.

[35] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan,
M. Nasser, and P. Flora, “Leveraging performance counters
and execution logs to diagnose memory-related perfor-
mance issues,” in Proceedings of the 29th IEEE International
Conference on Software Maintenance, ser. ICSM ’13, 2013, pp.
110–119.

[36] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan,
“Detecting large-scale system problems by mining console
logs,” in Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, ser. SOSP ’09, 2009, pp.
117–132.

[37] K. Yao, G. B. de Pádua, W. Shang, S. Sporea, A. Toma, and
S. Sajedi, “Log4perf: Suggesting logging locations for web-
based systems’ performance monitoring,” in Proceedings of
the 2018 ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’18, 2018, pp. 127–138.

[38] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasu-
pathy, “Sherlog: Error diagnosis by connecting clues from
run-time logs,” in Proceedings of the 15th Edition of ASPLOS
on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’10, 2010, pp. 143–154.

[39] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang,
Y. Zhou, and S. Savage, “Be conservative: Enhancing fail-
ure diagnosis with proactive logging,” in Proceedings of the
10th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI ’12, 2012, pp. 293–306.

[40] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging
practices in open-source software,” in Proceedings of the
34th International Conference on Software Engineering, ser.
ICSE ’12, 2012, pp. 102–112.

[41] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Im-
proving software diagnosability via log enhancement,” in
Proceedings of the 16th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’11, 2011, pp. 3–14.

[42] L. Zeng, Y. Xiao, and H. Chen, “Linux auditing: Overhead
and adaptation,” in 2015 IEEE International Conference on
Communications, ser. ICC ’15, 2015, pp. 7168–7173.

[43] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and
Y. Zhou, “Log20: Fully automated optimal placement of
log printing statements under specified overhead thresh-
old,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17, 2017, pp. 565–581.

[44] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang,
“Learning to log: Helping developers make informed
logging decisions,” in Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ser. ICSE ’15,
2015, pp. 415–425.

[45] T. Zimmermann, “Card-sorting: From text to themes,” in
Perspectives on Data Science for Software Engineering, L. W.
Tim Menzies and T. Zimmermann, Eds. Burlington,
Massachusetts: Morgan Kaufmann, 2016, pp. 137–141.

17

Heng Li is a postdoctoral fellow in the Software
Analysis and Intelligence Lab (SAIL) at Queen’s
University, Canada. He obtained his Ph.D. from
the School of Computing, Queen’s University
(Canada), M.Sc. from Fudan University (China),
and B.Eng. from Sun Yat-sen University (China).
He worked at Synopsys as a full-time Software
Engineer before he started his PhD. During
his PhD and postdoc fellowship, he kept close
collaborations with the industry (e.g., Alibaba,
BlackBerry). His research interests lie within

Software Engineering, in particular, intelligent operations of software
systems, software log mining, software performance engineering, and
mining software repositories. Contact him at: hengli@cs.queensu.ca;
https://www.hengli.org.

Weiyi Shang is an Assistant Professor and Con-
cordia University Research Chair in Ultra-large-
scale Systems at the Department of Computer
Science and Software Engineering at Concordia
University, Montreal. He has received his Ph.D.
and M.Sc. degrees from Queens University
(Canada) and he obtained B.Eng. from Harbin
Institute of Technology. His research interests
include big data software engineering, software
engineering for ultra-large-scale systems, soft-
ware log mining, empirical software engineer-

ing, and software performance engineering. His industrial experience
includes helping improve the quality and performance of ultra-large-
scale systems in BlackBerry. Contact him at shang@encs.concordia.ca;
http://users.encs.concordia.ca/˜shang.

Bram Adams is an associate professor at Poly-
technique Montreal, where he heads the Lab on
Maintenance, Construction, and Intelligence of
Software. His research interests include release
engineering in general, as well as software inte-
gration, software build systems, and infrastruc-
ture as code. Adams obtained his PhD in com-
puter science engineering from Ghent Univer-
sity. He is a steering committee member of the
International Workshop on Release Engineering
(RELENG) and program co-chair of SCAM 2013,

SANER 2015, ICSME 2016 and MSR 2019.

Mohammed Sayagh is a postdoctoral fellow
in the Software Analysis and Intelligence Lab
(SAIL) in Queen’s University. He obtained his
PhD from the Lab on Maintenance, Construc-
tion, and Intelligence of Software (MCIS) in
Ecole Polytechnique Montreal (Canada). He ob-
tained his engineering degree in Software Engi-
neering from the Faculty of Science and Tech-
niques in Mohammedia (FSTM) - Morocco. His
research interests include software configuration
engineering, as well as multi-layer and compo-

nents architectures source code analysis. More details about his work is
available on “https://sailhome.cs.queensu.ca/˜msayagh”.

Ahmed E. Hassan is an IEEE fellow and mem-
ber, ACM influential educator, an NSERC Stea-
cie Fellow, a Canada Research Chair (CRC) in
Software Analytics, and the NSERC/BlackBerry
Software Engineering Chair at the School of
Computing at Queens University, Canada. His
industrial experience includes helping architect
the Blackberry wireless platform, and working
for IBM Research at the Almaden Research
Lab and the Computer Research Lab at Nortel
Networks. His research interests include min-

ing software repositories, empirical software engineering, load test-
ing, and log mining. Dr. Hassan serves on the editorial board of the
IEEE Transactions on Software Engineering, the Journal of Empirical
Software Engineering, and PeerJ Computer Science. He spearheaded
the organization and creation of the Mining Software Repositories
(MSR) conference and its research community. More information at
https://sail.cs.queensu.ca/

