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Abstract—Logs contain valuable information about the runtime behaviors of software systems. Thus, practitioners rely on logs for
various tasks such as debugging, system comprehension, and anomaly detection. However, logs are difficult to analyze due to their
unstructured nature and large size. In this paper, we propose a novel approach called LogAssist that assists practitioners with log
analysis. LogAssist provides an organized and concise view of logs by first grouping logs into event sequences (i.e., workflows), which
better illustrate the system runtime execution paths. Then, LogAssist compresses the log events in workflows by hiding consecutive
events and applying n-gram modeling to identify common event sequences. We evaluated LogAssist on logs generated by one
enterprise and two open source systems. We find that LogAssist can reduce the number of log events that practitioners need to
investigate by up to 99%. Through a user study with 19 participants, we find that LogAssist can assist practitioners by reducing the time
required for log analysis tasks by an average of 40%. The participants also rated LogAssist an average of 4.53 out of 5 for improving
their experiences of performing log analysis. Finally, we document our experiences and lessons learned from developing and adopting
LogAssist in practice. We believe that LogAssist and our reported experiences may lay the basis for future analysis and interactive

exploration on logs.

Index Terms—Log analysis, log compression, n-gram modeling, log abstraction, workflow characterization, log reduction

1 INTRODUCTION

OFTWARE systems generate logs during field operations
S or in-house testing. Such logs contain rich information
about the runtime behaviors of software systems [1], [2],
[3]. Therefore, logs are widely leveraged by practitioners in
software development, operation, and maintenance tasks,
such as failure diagnosis [4], [5], [6], anomaly detection [7],
[8], [9], [10], [11], [12], performance analysis [13], [14], [15],
[16], and system comprehension [4], [17].

Despite their importance, the enormous sizes (e.g., tens
or hundreds of gigabytes) of logs [18], [19] have become
a major obstacle for logs analysis [2], [1], [20], [21], [6]. In
particular, analyzing large-scale log data usually faces the
following challenges:

o Unstructured logs. Logs are unstructured data that con-
sist of some natural language text and a few dynamic
values [22], [23]. Thus, it is challenging to automatically
parse and analyze logs.

o Intermixed event sequences. Different event sequences
(e.g., the sequence of events associated with a user
login) are intermixed with each other, making it diffi-
cult for practitioners to understand the system runtime
behaviors or identify the event sequences that may lead
to a runtime issue [6].
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o Rapidly growing log size. Large-scale systems (e.g.,
cloud platforms) generate tens of gigabytes to terabytes
of logs daily [24], [25], [20], making it challenging to
manage and analyze such large-scale logs.

Prior work proposes approaches to address these chal-
lenges to a certain extent. To address the challenge related
to the unstructured nature of logs, prior work proposes
approaches for automatically parsing raw logs into struc-
tured forms [26], [27]. However, prior work rarely explores
the challenges related to intermixed event sequences. To
address the challenge related to the large size of logs, prior
work proposes approaches for compressing logs [28], [23].
However, such log compression approaches only aim to
save storage space while not being able to provide assis-
tance when logs are analyzed in practice. Commercial log
analytic platforms like Splunk [29] and ELK [30] also allow
practitioners to efficiently manage and analyze large-scale
logs (e.g., search for keywords) by leveraging distributed
storage. However, such log analytic platforms are unable to
provide detailed insights into the specific event sequences
associated with such keywords.

In this work, we propose LogAssist, a novel approach
for assisting practitioners with log analysis, which aims
to address all the three above-mentioned challenges. First,
LogAssist parses the raw logs into abstracted log events
(i.e., addressing the challenge related to unstructured logs).
Then, LogAssist untangles the raw logs into meaningful
event sequences (i.e., workflows) using certain grouping IDs
commonly available in logs, to address the challenge related
to intermixed event sequences. Finally, LogAssist leverages
n-gram models to identify common event sequences, and
further uses the identified sequences to compress the logs



into a much more concise representation (i.e., addressing
the challenge related to the large size of logs). In addition,
LogAssist allows practitioners to expand and explore the
compressed form on demand, providing practitioners the
flexibility to access the complete information in the logs.

We evaluate LogAssist on logs from one enterprise and
two open source systems. We study the effectiveness of Lo-
gAssist both quantitatively and qualitatively, by answering
three research questions (RQs):

RQ1 How well can logs be compressed into re-occurring event
sequences? We quantitatively examine how effectively
LogAssist can compress raw logs into concise represen-
tations.

RQ2 How much can LogAssist reduce the volume of logs needed
to be examined in log analysis tasks? We quantitatively ex-
amine how effectively LogAssist can reduce the number
of log lines that need to be examined by practitioners
when performing log analysis tasks.

RQ3 How much can LogAssist help improve users’ log analysis
experiences? We conduct a user study to understand
how well LogAssist can improve users’ experiences
when performing log analysis tasks over using raw logs
alone.

Our results show that LogAssist can compress the raw
logs into a much more concise representation, while allow-
ing practitioners to access the complete information of logs
only when necessary. LogAssist significantly simplifies log
analysis tasks and improves practitioners’ log analysis expe-
riences. We document our experiences and lessons learned
from developing and adopting our approach in practice,
which can provide insights for researchers and practitioners
who wish to develop similar tools to assist with log analysis
tasks. LogAssist can be leveraged as a basis and starting
point to further advance interactive log analysis techniques.

Paper organization. Section 2 provides motivating ex-
amples. Section 3 describes the design and implementation
of our approach. Section 4 presents the evaluation results.
Section 5 discusses the lessons that we learned from devel-
oping and adopting our approach. Section 6 outlines the
possible threats to the validity of our findings. Section 7
discusses related work. Section 8 concludes the paper.

2 MOTIVATING EXAMPLES

To illustrate the challenges that practitioners face during log
analysis, we present motivating examples of using logs in
three hypothetical, yet realistic situations on a large-scale
enterprise system. The system is composed of several large
components. Each component can be distributed in different
environments and serve different purposes.

Situation one: Anomaly detection after load testing. Dave
is a load testing specialist. Dave’s main day-to-day job is
to test the behavior of the system under load before the
system is released to the customers. Dave designs a 48-hour
test that simulates real-world user usages. After running
the test, Dave needs to confirm whether there exist any
anomalous behaviors that occurred during the test. Such
a task is typically done by analyzing the logs that are
generated during the test. However, due to the scale of the
system and the lengthy nature of the test, the generated
logs are of tremendous size. As it is impossible for Dave
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to manually analyze gigabytes or even terabytes of logs,
Dave uses simple keyword search (e.g., error or exception)
to find problematic log lines [17], [31], [32]. Unfortunately,
the search results still return thousands of problematic log
lines. Dave needs to manually investigate not only these
log lines but also the related log events to uncover the
system execution that led to the problem [33], [6], [34], [35].
As the resulting logs contain intermixed information from
both normal and abnormal system behaviour, Dave encoun-
ters challenges when analyzing an enormous amount of
unstructured logs. It is challenging and difficult for Dave
to manually identify which events correspond to specific
execution sequences to understand the system behaviour
and diagnose possible anomalous event sequences.

Situation two: Recovering common user behaviors. From
time to time, Dave also needs to update the design of the
load test to reflect changes in user behaviors and system
functionality. Hence, Dave needs to recover the common
user behaviors by analyzing the logs generated by end
users in the deployed system. Such recovered common user
behaviors can later be integrated into the design of the
updated load tests. Similarly, Dave relies on using keywords
(e.g., log in or checkout) that are related to the key function-
ality to search for common user behaviors. However, due
to the complexity of the system, such keyword searches
may return inaccurate estimation on the executed loads.
For example, one user action may result in multiple log
lines containing the same keyword, or some keywords may
be removed from the logs as the system evolves. Dave
faces the challenge of manually summarizing the logs and
identifying the corresponding user actions. These logs are
large in scale, and may be interwoven and contain many
repetitions, which makes the analysis even more difficult.

Situation three: Identifying the root causes of system
runtime issues. Alice is a senior developer in the team.
Alice’s main duty is to develop new features and maintain
the quality of the code. When a system runtime issue occurs,
Alice needs to investigate the issue and find the root cause
in the code. In particular, Alice needs to examine the logs
that may provide clues for the system runtime activities
(i.e., event sequences that represent the system execution
path) that led to the runtime issue. However, leveraging
the raw logs to identify such clues is challenging [6], [34].
As many execution workflows intermix with others in the
logs, it is difficult to manually examine the logs and find the
corresponding events that lead to a runtime issue.

Challenges observed during the above-mentioned situ-
ations. Logs in their nature are unstructured and disor-
ganized. Although often written in the form of human-
readable text, manually exploring logs in practice is counter-
productive and often impossible due to the massive size of
logs. Therefore, for the practitioners who depend on logs on
a daily basis, there is an urgent need for automated tech-
niques that can summarize logs for further manual explo-
ration, while preserving the valuable information contained
within the logs. In order to assist our industrial partner in
addressing such challenges, we design an approach that can
automatically summarize a large number of logs and assist
practitioners with various log analysis tasks.
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Fig. 1. The overall flow of our approach LogAssist with a running example demonstrating its steps.

3 THE DESIGN OF LogAssist

In this section, we describe our approach, LogAssist, which
transforms raw logs into a concise form that is more conve-

be converted into a structured form to perform subsequent
analysis [7], [31], [36]. Log abstraction is widely used to cate-
gorize raw log lines [17], [31], [37], [38], [39] which involves

nient for practitioners to browse and analyze.

Figure 1 illustrates the overall process of our approach
with a running example. First, LogAssist parses the raw logs
into structured logs (i.e., log events). Then, the log events
are grouped by grouping IDs (e.g., thread IDs) to form
workflows. Next, LogAssist compresses the log events in
each workflow into a more concise representation using n-
grams. Finally, LogAssist can reconstruct the original logs
from the compressed form. We implement LogAssist as a
prototype which helps practitioners with log analysis. We
explain the detailed steps of LogAssist below.

3.1 Log Abstraction

Raw logs are unstructured text that contain both static and
dynamic information. Such unstructured logs first need to

parsing log files by separating the static and dynamic com-
ponents of each log line, and assigning a common event ID
to lines which share a common template for the remaining
static components. This process allows for categorizing log
lines by representing a line by the resulting event ID of the
log abstraction tool results. By categorizing and representing
log lines with an event ID, we are able to use event IDs
as the items in our n-gram models in which we compute
conditional probabilities.

In this step, LogAssist leverages an existing log abstrac-
tion tool, Drain [26], to parse each raw log line into a
structured form, i.e., an event template and a list of variables
values. We choose to employ Drain as it is considered one of
the state-of-the-art approaches for log abstraction [36]. The
default implementation of Drain requires one to configure



a set of header identifiers (e.g., timestamp and thread ID),
which are used by the tool to extract such header infor-
mation from the execution logs. Accordingly, LogAssist also
requires one to define the headers for each log dataset. Drain
parses each raw log line into an event template and a list of
variable values [26]. As demonstrated in Figure 1, the event
template contains the static information, with a wildcard
(i.e., a <*> symbol) in place of all dynamic variables, and
a unique event ID for each event type. The list of variable
values indicate the dynamic components of the log line. In
the running example (Figure 1), 20 log lines are abstracted to
five types of log events (i.e., E1 through E5). The abstracted
log events (i.e., the templates) are used as the basic form for
compressing logs in the next steps. Lines 1, 3, 5, 9, and 16
are considered as instances of the same event as they contain
a common abstracted template with only differences in the
dynamic values (e.g., Timestamp and TaskID). We apply log
abstraction to all the logs and assign a unique event ID to
every abstracted template.

3.2 Workflow Creation

A sequence of log lines may be related, and together, they
may record the process of performing a certain task [10],
[11], [31], [32], e.g., the process of placing an order that
includes the sequence of logging in, adding products to
the cart, and checking out. Such log sequences (i.e., work-
flows) provide essential information for practitioners to
debug various problems and comprehend the executed user
requests [6], [37], [40], [31]. Hence, in this step, LogAssist
creates workflows from the parsed log events.

Group log events by grouping ID. As the input logs consist
of intermixed events from different workflows, we follow
prior work by first grouping the log events by the grouping
ID [11], [10], [31], [32]. An example of intermixing events
can be seen in Figure 1 in the Raw Logs (shown in the
first table in Step 1. Log Abstraction) where events of a
workflow with TaskID=T2 appearing on lines 3, 4, 6, 8, 13,
and 14. Intermixed within these lines are the events of other
workflows where TaskID=T3 and TaskID=T4, appearing on
lines 5, 7, 11, and 12, and lines 9 and 10, respectively. In
practice, this may occur on a much larger scale and two
sequential events in a workflow may be separated by tens
or possibly hundreds of intermixing log lines. In the running
example (Figure 1), the grouping ID is “TaskID”.

Separate by Time Gap. However, the log events with the
same grouping IDs may not necessarily belong to the same
workflow, as grouping IDs may be repeated by different
occurrences of the same type of workflow or be reused by
different types of workflows (e.g., each thread in a thread
pool might be reused, so the same thread ID will appear
multiple times) [41]. Therefore, we further separate the log
events with the same grouping ID into separate workflows,
based on the time difference between the log events. Our
intuition is that log events within the same workflow have
smaller time differences while log events from different
workflows reusing the grouping ID will lead to larger time
differences. We use a find_peaks algorithm from the signal
processing domain [42] to detect time gaps that separate
different workflows. The find_peaks algorithm takes an array
of data points and finds all local maxima by comparing each
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data point with its neighbouring points. Specifically, each
log line within the group is assigned a time-diff based on
the difference between the timestamp of the log line and
the timestamp of the previous log line. Then, we use the
find_peaks algorithm to detect the peak points in the time
differences. The detected peak points are then used to
separate the log lines in a group into smaller workflows.
In the running example (Figure 1), five workflows (i.e., W1,
W2, W3, W4 and W5) are created. Two T1 are created since
there is a large time gap between their occurrences (line 2
and 16).

3.3 Workflow Reduction

The log events in a workflow may contain redundant in-
formation, e.g., repetitive log events and sequences of log
events that always appear together [10], [11], [4]. Such
repetitive log events may mask real problems in the logs
or introduce additional challenges in log analysis [7], [17],
[43], [44]. Therefore, LogAssist eliminates the redundancies
to reduce the workflows into a more concise representation.
LogAssist performs two steps to reduce the amount of log
lines within a workflow: collapsing consecutive events and
collapsing with n-gram modeling.

Collapse consecutive events. LogAssist first reduces the
consecutive occurrences of the same event into a single
occurrence. Such consecutive occurrences of the same event
may be events contained in a loop, or a continuous no-
tification of a process waiting for a resource to become
available, which usually indicates repetitive and redundant
information [17]. In the running example (Figure 1), both
workflows W3 and W4 contain two consecutive occurrences
of event E3 as seen in the event sequences E1,E3,E3,E4,E5,E2
and E1,E3,E3,E2. Both instances of consecutive occurrences
of E3 are reduced to a single occurrence, resulting in event
sequences E1,E3,E4,E5,E2 and E1,E3,E2 for workflows W3
and W4, respectively.

Collapse with n-gram modeling. After collapsing con-
secutive occurrences of the same events, LogAssist further
reduces the re-occurring patterns of event sequences into a
more concise representation. In addition to collapsing con-
secutive events as done in [17], we apply n-gram modeling
to apply further reduction where possible. As we collapse
with n-grams with a certainty of 100%, we are able to effec-
tively reduce workflows and subsequently group them into
common workflow types while maintaining a high precision
of workflow grouping (i.e., ensuring that the workflows in
the same group indeed have the same workflow type). For
example, if event E1 is always followed by E2 and the event
sequence E1,E2 is always followed by E3, then the certainty
of the event sequence EI1,E2,E3 is 100% given the event E1.
Thus, we can use E1 to represent the entire event sequence.
Utilizing n-gram to collapse the event allows LogAssist to
reduce all instances of these workflow types to the same
common workflow type format and group them together.
Our intuition is that, if some events always appear in a fixed
event sequence, then such an event sequence can be reduced
into one event. Specifically, we calculate the conditional
probability of a n-gram as:

count(ey...ep)

M

plenfer-en-1) = count(ey...p_1%)



where (e;...e, ) indicates an event sequence of length n, * is
a wildcard that represents any event. We reduce a n-gram
sequence into a single event if the conditional probabilities
of the second event through the nth event are all 100% (i.e.,
plenlel...en—1) =1, plep_1lel...en—2) =1, ..., p(ealer) = 1.
Such a reduction guarantees that all the events can be
unambiguously represented in the compressed form. We
consider 2-grams and 3-grams only, as a prior study [22]
finds that the repetitiveness of an n-gram in logs starts to
become stable when n < 3. In the running example, the
event sequence E4,E5E2 always appears together (i.e., the
conditional probabilities p(E2|E4, E5) and p(E5|E4) both
equal to 1), thus it is reduced into a single event E4 (i.e., the
first event in the sequence) in W2 and W3. This results in the
event sequence of E1,E3,E4,E5,E2 in workflows W2 and W3
being reduced to E1,E3,E4.

Following the collapsing of n-grams, the workflow re-
duction step once again collapses any consecutive sequences
of identical events and applies the n-gram modelling re-
duction again. This combination of consecutive event and
n-gram collapsing repeats as an iterative step until the no
further collapsing can be done.

3.4 Log Reconstruction

Finally, the compressed form of logs may need to be recon-
structed into the original form to assist with log analysis
tasks that need the complete information in the logs. There-
fore, LogAssist supports log reconstruction that rebuilds the
original logs from the compressed form. In particular, our
reconstructed logs keep the holistic workflows (i.e., avoid-
ing intermixed log lines across different workflows).

LogAssist is Lossless. LogAssist provides the ability to view
a given workflow in multiple forms at different verbosity
levels. While each of these forms is represented by a varying
amount of log lines, our approach is lossless as each of these
forms can be viewed by expanding and collapsing the work-
flows where applicable. LogAssist contains the complete
information of the original log lines (i.e., the corresponding
line number in the original form) and allows practitioners
to expand the workflows to their original log lines without
losing any information. Internally within LogAssist, all log
lines from the initial raw logs that were passed into the
log abstraction step have their line numbers mapped to the
resulting reduced workflows. Therefore, LogAssist supports
reconstructing the original logs based on such line number
mappings. No single event is ever permanently lost during
log reduction, but rather the events that are hidden in the
compressed forms can be accessed by expanding the work-
flow. In the most reduced form, we represent a workflow as
a single log line where the workflow ID label can be used
to obtain information on this workflow type. In the most
expanded form, we represent the workflow in its entirety
showing every single line. In between these forms, there
may be a number of other varying representations where
inner workflows can be collapsed or expanded, allowing
users to choose their desired level of verbosity to suit their
own needs, preferences, and tasks.

3.5 An Exemplar Usage Scenario of LogAssist

We implemented a web-based graphical user interface as
shown in Figure 2. The Workflow Type Details Panel to the
left shows the statistics of a unique workflow type (e.g., the
number of workflows that belong to this unique workflow
type, the number of events in the unique workflow type,
the size of the workflow after compression, and the com-
mon log event sequence). The Workflow Log Report Panel
to the right shows the compressed log lines grouped by
their corresponding workflow. By default, we represent each
workflow instance as a single line showing the first event in
the workflow, its workflow instance ID, and the assigned
workflow type ID.

A user may start by looking at the Workflow Type Details
Panel until they find a workflow type of interest, because
the particular workflow is critical to the system behaviour
or may be suspected of relating to system issues. Then, the
user would navigate to the instances of this type and expand
the workflow instances in order to gain more details. In
the Workflow Type Details Panel, users would find various
details on the workflows that share this common workflow
type, including the abstracted common event sequence and
an example workflow instance. The Workflow Instances list
details all workflow instance IDs of this type, which allows
the user to navigate to the workflow instances conveniently.
By clicking the “+” button of an instance, as seen in the
upper box labeled Common Workflow Type Representation
in Figure 2, the user will expand the workflow instance
into the common representation of the workflow type as
seen in the Common Sequence Abstracted log lines shown in
the Workflow Type Details Panel. By clicking the inner “+”
buttons, users will be able to expand the Common Workflow
Type Representation further into the Full Workflow Instance
Representation as seen in the lower box in the Workflow Log
Report Panel of Figure 2. This will reveal log lines of the
workflow instance that were abstracted away in the Common
Workflow Type Representation form, providing the complete
details of the workflow to assist the user.

4 EVALUATION

In this section, we evaluate our approach. We select three log
datasets to demonstrate the effectiveness of our approach
in reducing logs, including two log datasets generated by
two open source systems, HDFS and ZooKeeper, and one
log dataset generated by one enterprise system (i.e., the
Enterprise System, ES). The HDFS and Zookeeper datasets
are obtained from a log parsing benchmark [36], while the
ES dataset is obtained from our industrial collaborator (Eric-
sson). We use the thread ID as the grouping ID for the open
source systems. Note that, in some distributed systems,
logs may contain correlation IDs to correlate logs across
nodes/components that are related to the same requests.
In such cases, developers may use the correlation ID as the
grouping ID when using our approach.

Table 1 summarizes our selected log datasets. Due to
the non-disclosure agreement, we cannot reveal the detailed
information of the logs from ES; however, the logs are large
in size, and are generated by a large-scale enterprise system
that is used by millions of people around the world on
a daily basis. The evaluation of our approach consists of
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Fig. 2. An exemplar web-based user interface of LogAssist.

TABLE 1
A summary of the studied log datasets.

Logging System Log size Duration | Grouping ID
HDFS 11M lines | 36.68 hours Thread ID
ZooKeeper 74K lines | 62.29 hours Thread ID
Enterprise System | Very Large Very Long Thread ID

answering three research questions (RQs), which involve
a combination of automated analysis and a user study.
For each research question, we discuss the motivation, ap-
proach, and results.

4.1 RQ1: How well can logs be compressed into re-
occurring event sequences?

Motivation. During the execution, a system often needs
to process a large number of re-occurring events [7], [10],
[11]. For example, in an e-commerce system, thousands of
users may be logging in and logging out on a daily basis.
The triggering of such re-occurring events may repeatedly
generate the same log event sequences, which may cause
wasted efforts and mask important problems captured in
logs [2], [3]. Therefore, we propose LogAssist which lever-
ages such re-occurring information to compress raw logs
into a conciser form. LogAssist first groups the raw logs into
workflows, then applies reduction techniques to collapse
consecutive events, and finally collapses the events with
n-gram modeling. In this RQ, we want to examine how
many log lines can be compressed by our approach. If we
can compress most of the repeated log event sequences, we
may significantly reduce the effort that practitioners need to
spend on analyzing the logs.

Approach. We use the following metrics to evaluate the
effectiveness of LogAssist in compressing the raw logs. For
each evaluation metric, we measure its value before and
after applying LogAssist to compress the raw logs.

o Number of log lines: The total number of log lines in
the raw logs or in the compressed form.

e Number of unique workflows: The number of distinct
workflow types that are identified in the raw logs (i.e.,
before performing workflow reduction) or the number
of distinct workflow types remaining in the compressed
form (i.e., after performing workflow reduction). The
workflows with the same sequence of events in their
reduced form are considered to share the same unique
workflow type.

o Workflow size mean: The average number of log
events in a workflow before or after workflow reduc-
tion.

o Workflow size median: The median number of log
events in a workflow before or after workflow reduc-
tion.

o Workflow size st. dev: The standard deviation of
the number of log events in a workflow before or
after workflow reduction. A higher standard deviation
indicates a high variance of workflow sizes that may
cause extra effort in log analysis.

Comparison with prior work. To assist practitioners in
identifying deployment problems, Shang et al. [17] pro-
posed an approach to compare the workflow types between
testing and production environments. Although the usage
and motivation of the approach is different from LogAssist,
Shang et al. [17] also applied workflow reduction. Therefore,
we use [17] as a baseline and compare it with LogAssist. Both
LogAssist and [17] leverage a dynamic value (e.g., ThreadID
or TaskID) to group related events. However, LogAssist also
applies additional logic for determining event sequences
(workflows) where we use the time gap between the events
to separate the workflows (i.e., accounting for the reusing
of the dynamic values such as ThreadIDs), as explained
in Section 3.2. Additionally, while LogAssist and [17] both



TABLE 2
The results of applying LogAssist to compress the HDFS, Zookeeper, and Enterprise System datasets. Before and After show the reduction result
after applying both consecutive reduction and n-gram (i.e., Consec.+n-gram).

HDFS Zookeeper Enterprise System

Before After Consec. Consec. | Before  After Consec. Consec. Consec. Consec.

Reduction  4n-gram Reduction  4n-gram | Reduction +n-gram

Number of Log Lines 11,175,579 1,612,315 52.3% 85.6% | 74,380 4,543 24.2% 93.9 % 22.9% 75.2%
Number of Unique Workflows 72,426 7,372 43.4% 89.8% 329 98 42.9% 70.2% 3.1% 3.1%
Workflow Size Mean 212 31 52.3% 85.6% 26.0 1.6 24.2% 93.9% 22.3% 75.2%
Workflow Size St. Dev 1,019.1 63.5 89.1% 93.8% 534.7 0.88 2.4% 99.8% 22.6% 75.4%
Workflow Size Median 3 2 0% 33.3% 3 2 33.3% 33.3% 0% 50.0%

TABLE 3 89.8%. The unique workflow types indicate the complexity

The number of workflows for which the log events are compressed. The
numbers in the parentheses show the percentage.

Num. of workflows
compressed

334,752 (63.5%)
2,787 (97.6%)

- (88.1%)

Total workflows

HDFS 527,326
Zookeeper 2,857
Enterprise System -

summarize event sequences (workflows) by collapsing con-
secutive repeating events, [17] applies this step only once
per event sequence (workflow). On the other hand, LogAssist
applies this step recursively and uses n-gram modeling to
further reduce the workflow. This process that combines
collapsing consecutive events and collapsing based on n-
gram modeling continues iteratively on each workflow until
no further reduction can be done.

[17] groups permutations of an event sequence into
the same workflow type to reduce the number of unique
workflows types. For example, the sequence EI1,E2,E3,E4
and its permutation E1,E3,E2,E4 are grouped to the same
workflow type. As our goal is to assist practitioners with
log analysis instead of identifying workflow differences in
different deployments, we want to preserve the event orders
and do not apply the permutation grouping in our final ap-
proach. However, to better compare [17] with LogAssist, we
consider both with and without permutations for the two
approaches, and report the reduction in unique workflow
types and total log lines.

Evaluating the effect of n-gram modeling. Prior
work [17] collapses consecutive repeating events during
workflow creation but does not use n-gram modeling. In
order to understand the effect of applying n-gram modeling
for further reducing the log lines, we compare LogAssist with
its simplified version that does not apply the “collapse with
n-gram modeling” step. Specifically, the simplified version
does a single pass of “collapse consecutive events” instead
of applying the combined ”“collapse consecutive events”
and ”collapse with n-gram modeling” steps in an iterative
manner (as done in LogAssist).

Results. LogAssist compresses the raw logs into a concise
representation that is 75.2% to 93.9% smaller. Table 2 shows
the results of measuring the evaluation metrics on the raw
logs (i.e., before applying LogAssist) and on the compressed
representation (i.e., after applying LogAssist). Our results
show that LogAssist can compress a significant amount of
log lines in the studied systems: 85.6%, 93.9%, and 75.2% for
HDEFS, Zookeeper, and Enterprise System, respectively. Our
results indicate that there are many re-occurring log events
or event sequences that practitioners may be able to skip
during log analysis.

LogAssist reduces the unique workflow types by up to

of the system behavior recorded in the logs. The larger
the number of unique workflow types, the more diverse
the system behavior, thus more effort may be needed to
analyze the system behavior. As shown in Table 2, the
unique workflow types are reduced by 70.2% to 89.8% for
the open source systems. The results show that a unique
workflow type may have different variances that can be
identified by LogAssist. In other words, LogAssist may help
practitioners reduce the needed effort to navigate and study
the sequences of log events and the dynamic execution
paths using the compressed workflows (see our user study
in RQ3). The unique workflow types are only reduced by
3.1% for ES. Although we cannot disclose the details for
ES, we find that the smaller reduction in the number of
unique workflow types is due to the nature of the analyzed
workflows i.e., each workflow type of ES has fairly fixed
event sequences (i.e.,, with less variance). However, our
approach can still compress most of the re-occurring log
lines in ES.

LogAssist reduces the average size of a workflow by 75.2%
to 93.9%. Table 3 shows the number of workflows where
the logs are compressed. We find that most workflows can
be compressed: 63.5%, 97.6%, and 88.1% of the workflows
are compressed in HDFS, Zookeeper, and ES, respectively.
Table 2 also shows the statistics of the number of log lines
in each workflow. On average, LogAssist reduces the size of
each workflow by 75.2% to 93.9%. Taking the HDEFS logs
for example, the average number of log events in each
workflow is reduced from 21 to less than 3. In addition,
the standard deviation of the number of log events in a
workflow is also significantly reduced (75.4% to 99.8%),
meaning that the workflow sizes become more consistent
after applying LogAssist. Our findings show that there is
a high-level of repetition of log events within a workflow.
The reduction in the median workflow size is smaller,
which is due to the fact that most of the workflows are
small in size (e.g., the median workflow size is three log
events for the two studied open source systems even before
compression). Additionally, for each system we perform
a Wilcoxon signed-rank test to compare the sizes of the
original workflows and the reduced workflows. Our results
indicate that LogAssist can provide a statistically significant
reduction in the size of workflows in logs with a value of
p<0.001 across all three systems.

LogAssist is more effective in reducing the log events
for larger workflows which are more likely to contain
repetitive information. Table 4 shows the percentage re-
duction for workflows with a size less than, equal to, and
greater than the median workflow size. In all three systems,
workflows with sizes greater than the median show a sig-



TABLE 4
Reduction % based on size of workflow compared to the median
workflow size.

HDFS  Zookeeper Enterprise System
<Median | 14.83 46.43 N/A
Median 19.01 37.37 41.07
>Median | 65.90 85.18 69.82
TABLE 5

A comparison between LogAssist and current state-of-the-art approach
by Shang et al. [17] for reduction % in unique workflow types (with and
without permutations), and reduction % in total log lines.

Reduction % in Unique Workflow Types
w/ permutations w /o0 permutations

Reduction % in Log Lines

LogAssist Shang et al., | LogAssist Shang et al., | LogAssist| Shang et al.,
ICSE2013 ICSE2013 ICSE2013
HDFS 95.03 86.68 89.80 43.40 85.60 52.30
Zookeeper 72.64 46.50 70.20 42.85 93.90 24.20
Enterprise System 3.10 3.10 3.10 3.10 75.20 22.90

nificantly higher reduction percentage (65.90% to 85.18%)
than those that are less than or equal to the median size
(14.83% to 41.07%). The results show that larger workflows
are more likely to be reduced compared to smaller ones.
Larger workflows may contain more repetition, which re-
sults in higher reduction rates. Additionally, when using
a threshold of 100% probability for the n-gram collapsing,
the opportunity to reduce these logs is highly dependent
on the nature of the workflows. If the events do not follow
any specific ordered sequence, the n-gram probabilities may
not meet the required threshold and subsequently n-gram
reduction will not be possible.

Application of n-gram modeling in LogAssist is signifi-
cantly more effective than applying consecutive collapsing
of duplicate events alone. As shown in Table 2, applying
both n-gram collapsing and consecutive collapsing of dupli-
cate events shows significantly higher reductions compared
to applying only consecutive collapsing. By applying n-
gram, we see 33.3% to 69.7% additional reduction in the
number of log lines in all studied systems, and 27.3% to
46.5% in the number of unique workflows in HDFS and
Zookeeper. The mean, median, and standard deviation of
workflow sizes show additional reductions of 33.3% to
69.7%, 4.7% to 97.4%, and 33.3% to 50%, respectively, across
all three systems.

LogAssist outperforms current state-of-the-art in grouping
common events and reducing total log lines. Table 5
shows that both LogAssist and its variation with permutation
grouping outperform [17]. As previously stated, due to
differing goals between LogAssist and [17], we do not apply
permutation grouping in our final approach as we aim to
keep the distinction between different orders of the event
sequences in the workflows. LogAssist can be extended to
include this functionality if required. However, to ease the
comparison between the two approaches, we also included
grouping by permutation in LogAssist. Table 5 shows the
comparison results. The findings indicate that in all cases,
LogAssist outperforms [17] for both the percentage reduction
in unique workflow types and log lines. Comparing both ap-
proaches without grouping by permutations shows an addi-
tional 27.35% to 46.4% reduction in unique workflow types
for HDFS and Zookeeper when using LogAssist. Comparing
both approaches with grouping by permutations shows an
additional 8.35% to 26.14% reduction in unique workflow
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types for HDFS and Zookeeper when using LogAssist. Fi-
nally, comparing [17] with permutation grouping to the
default form of LogAssist without permutation grouping,
LogAssist still shows an additional 3.12% to 23.7% percent
reduction in unique workflow types. Both approaches have
the same reduction (3.1%) in the unique workflow types
in the Enterprise system. However, the results show that
LogAssist achieves an additional 33.3% to 69.7% reduction
in total log lines over [17]. The reason is that [17] only
reduces individual workflows by collapsing consecutive
duplicate events. On the other hand, LogAssist applies an
iterative approach which includes collapsing consecutive
duplicate events in combination with collapsing using n-
gram modeling.

LogAssist is able to reduce the log events that practition-
ers need to investigate by 75.2% to 93.9%. Moreover, by
using LogAssist, we can significantly reduce the unique
workflow types by 70.2% to 89.8% in the open source
systems. Our results indicate that there is a significant
number of re-occurring log events in the studied sys-
tems, and reducing such information may further help
practitioners with log analysis.

4.2 RQ2: How much can LogAssist reduce the volume of
logs needed to be examined in log analysis tasks?

Motivation. Due to the sheer size of logs, practitioners
often search for keywords such as “error” or “exception” to
first locate potential problems that occurred during in-house
tests or regular user usage [17], [31], [32]. After locating the
problematic log lines containing the keywords, practitioners
then need to analyze the potential root cause by manually
studying the related log lines. For example, practitioners
need to manually identify which log event sequences led
to the exception [33], [40], [45]. This log analysis process
can be very time-consuming, since there may be thousands
of log lines that contain the keywords. LogAssist groups
logs into workflows and compresses the logs by identifying
common log event sequences. The unique workflows that
LogAssist identifies may help reduce the amount of logs
that practitioners need to go through when searching and
debugging for problematic log lines. Therefore, in this RQ,
we study how many log lines may need to be examined
given various keywords before and after applying LogAssist.
Approach. We follow prior work [17] to study how ef-
fectively LogAssist can reduce the volume of logs to be
examined in log analysis tasks. We perform several typical
log analysis tasks on the raw logs and on the compressed
representations. We then determine the number of log lines
that would need to be examined before and after applying
LogAssist, respectively. On each log dataset, we search for a
keyword in the logs and examine the searched logs, which is
commonly done in log analysis practices [46], [47], [29]. We
consider three tasks: one task for searching and analyzing a
normal message, and two tasks for searching and analyzing
certain system runtime issues (e.g., warnings, errors, or
exceptions). To identify the keywords, we manually exam-
ine the logs and uncover the log events that are related
to normal messages and system runtime issues. Then, we
choose the keywords in the most frequently appearing log



TABLE 6
Keywords for certain log analysis tasks for each studied system.
Keywords Rationale
K1-Normal | served block The keywords are related to data block being written to or read. The
keywords can be used to estimate the load of the system.
HDFS K2-Issue unexpected error trying to delete block The keywords are related to a reported bug in HDFS on disk!
K3-Issue redundant addStored-Block request re- | The keywords correspond to a warning that may indicate data loss?
ceived for
K1-Normal | accepted socket connection from The keywords are related to connection being established with
the Zookeeper server. The keywords are used to estimate system
Zookeeper behaviours under load, such as how long a connection lasts.
K2-Tssue unexpected exception causing shutdown | The keywords indicate a common exception that may happen during
data transmission issues?
K3-Issue caught end of stream exception The keywords indicate a common exception in Zookeeper related to
data storage and snapshot management*
* Note: The entire phrases are used as keywords to search
Uhttps:/ /issues.apache.org/jira/browse/ HDFS-4544
2 https:/ /news.ycombinator.com/item?id=9476515
? hitps://mapr.com/support/s/article/ Zookeeper-Unexpected-excep hutd hile-sock-still-open-i 0F t s
* https:/ /stackoverflow.com/ questions 38887977/ zookeeper-eeps c s rash
TABLE 7

Number of log lines to be examined using different representation of
logs (Scenario 1: examining only the searched log lines).

HFDS Zookeeper Enterprise System
Original Compressed Reduction |Original Compressed Reduction Reduction

Search key 1

ogs form logs form
K1-Normal | 428,726 803 99.81% 2,020 52 97.43% 75.00%
K2-Issue 5,545 25 99.55% 590 4 99.32% 80.00%
K3-Issue 975 96 90.15% 1,670 45 97.31% 75.00%
TABLE 8

Number of log lines to be examined using different representation of
logs (Scenario 2: examining the entire workflows that contain the
searched log lines).

HFDS

Original Compressed Reduction
logs form
861,998 10,153
1,375,884 2,964
3,257,875 284,926

Zookeeper

Original Compressed Reduction
logs form
80,37 907
1,190 7
8,477 803

Enterprise System
Reduction

Search key

K1-Normal
K2-Issue
K3-Issue

98.82%
99.78%
90.15%

88.71%
99.41%
90.53%

75.00%
77.78%
75.00%

event for each of the three categories, since those events are
the ones that practitioners may need to spend the most time
examining [17]. We list and explain the keywords that we
use to search for log lines in each of the studied systems in
Table 6.

For each task, we evaluate the number of examined log
lines based on two scenarios:

e Scenario 1: Examining only the searched log lines. For
some searched log lines, the log line itself may contain
all required information. In this scenario, we assume
that practitioners only examine the log lines that match
with the keywords.

e Scenario 2: Examining the entire workflow that
contains the searched log lines. However, for some
searched log lines, other log lines related to the searched
ones may also need to be examined (e.g., logs in the
same execution sequence) [33], [6], [40]. Therefore, in
this scenario, we assume that practitioners examine
all the log lines related to the searched log lines (i.e.,
all log lines in the workflows containing the searched
keywords).

Under each scenario, we evaluate the number of examined
log lines using two representations of the logs:

e Original logs. Examining the searched log lines (and
related log lines in the case of scenario 2) in the original
raw logs.

o Compressed form (unique workflows). Examining the
searched log lines (and related log lines in the case of
scenario 2) in the compressed form, considering only
each unique workflow type once. In the compressed

form, we consider only a single instance of each distinct
workflow type, since workflows of the same distinct
type share a common compressed form.

Results. LogAssist reduces the number of searched log lines
that need to be examined by practitioners by 75% to 99%.
Table 7 compares the number of log lines to be examined
using different representations of the logs (i.e., the original
and the compressed forms), assuming that practitioners
only examine the searched log lines. We find that without
LogAssist, keyword search returns up to 428K log lines for
the normal message, which is impossible to manually in-
spect. Even when searching for log lines that indicate system
runtime issues, keyword search returns several hundreds or
thousands of log lines. After applying LogAssist, the log lines
to examine are greatly reduced, with the log lines containing
the searched keyword only appearing in a small subset of
the workflows. Compared to using the original logs, using
LogAssist can reduce the number of log lines that need to be
inspected by up to 99%.
LogAssist dramatically compresses the searched-line-
related workflows that need to be examined by practi-
tioners (i.e., by up to 99% reduction). Table 8 compares
the number of log lines to be examined using different
representations of the logs, assuming that practitioners need
to examine the entire workflows containing the searched
log lines (which is a common practice in log analysis and
debugging [6], [40], [33]). We find that the number of
lines that need to be examined in the raw logs increased
significantly to up to millions. After using LogAssist to
compress the log lines, we can reduce the number of log
lines that need to be examined by 75% to 99%. Although the
reduction is large, we find that sometimes practitioners may
still need to investigate several thousands of log lines. After
some investigation, we find that it is because many of the
log events that contain the search keywords are generated
by different log event sequences (i.e., different workflows).
Namely, there may be different causes that lead to a normal
message or an issue-indicating message. In addition, some
workflows may contain hundreds of log events, which in-
creases the number of log lines that need to be examined.
However, our results can still help practitioners identify the
unique workflows that need to be examined and assist them
in examining the event sequences in the workflows.

Table 9 shows the number/percentage of workflows and
workflow types in which the keywords appear. We exclude
the raw numbers for ES due to the NDA. The percent-
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TABLE 9
The number of workflows and workflow types in which the search keys appear.

Search ke HFDS Zookeeper Enterprise System

Y Workflows (%)  Workflow Types (%) | Workflows (%)  Workflow Types (%) | Workflows (%) — Workflow Types (%)
Ki-Normal | 126,873 (24.06%) 175 (6.44%) 129 (4.52%) 18 (18.37%) —(14.29%) —(9.68%)
K2-Issue 29 (0.00549%) 23 (0.3119%) 590 (20.65%) 1 (1.02%) — (4.67%) — (4.67%)
K3-Issue 100 (0.0189%) 93 (1.262%) 161 (5.64%) 17 (17.35%) — (6.45%) — (6.45%)

age of workflows that contain the keywords range from
0.00549% to 24.06%, 4.52% to 20.54% and 4.67% to 14.29%
for HDFS, Zookeeper, and ES, respectively. The percentage
of workflow types that contain the keywords range from
0.3119% to 6.44%, 1.02% to 18.37%, and 4.67% to 9.68% for
HDEFS, Zookeeper, and ES, respectively. The results show
no significant correlation between the reduction percentages
shown in Table 7 and Table 8, and the number of workflows
and workflow types that contain these keywords.

LogAssist reduces the number of log lines that need to be
examined by practitioners by up to 99%. Our results also
indicate that there may be many different workflows
that lead to a system runtime issue, and LogAssist can
help practitioners identify such unique workflows.

4.3 RQ3: How much can LogAssist help improve users’
log analysis experiences?

Motivation. Our first two research questions seek to quanti-
tatively study the effectiveness of LogAssist for compressing
logs and assisting with log analysis. In this research ques-
tion, we aim to qualitatively evaluate how well LogAssist
can assist practitioners in performing log analysis tasks
and reduce the needed efforts. Therefore, we perform a
user study in which we invite practitioners and researchers
to perform typical log analysis tasks using LogAssist. We
compare the user study results with and without using the
tool.

Approach. We performed a user study with 19 participants,
among whom 7 are software engineering practitioners and
the other 12 are software engineering researchers (e.g., grad-
uate students). We asked the participants to perform six
log analysis tasks on the Zookeeper and HDFS datasets.
The tasks and the datasets are publicly available online'.
LogAssist uses a concise log representation to assist users
in log analysis while still providing users the flexibility
to access the entire information in the logs. Therefore, we
design tasks that require users to obtain information from
both the concise representation of the logs and the logs that
are hidden from the concise representation.

As even the most complex tasks are composed of smaller
tasks, we chose to select a set of smaller tasks in the user
study and provide specific instruction in order to ensure
that participants of varying backgrounds could complete
the tasks within a reasonable amount of time. Our designed
tasks covered a variety of typical log analysis tasks includ-
ing analyzing the event sequence that leads to an error,
counting the occurrences of certain event sequences (i.e.,
workflows), counting the occurrences of certain operations
that encounter errors, and summarizing key information
(e.g., the opened channels) in the logs. For example, one user

1. https:/ / github.com/SteveLocke/LogAssist-Artifacts.git

study task involves determining the count of an ordered
pair of events which occur together as part of the same event
sequence. Participants are given instructions on how to use
LogAssist, a starting point in the logs, and description of the
event pairs to be found. In practice, this task will likely be
part of a more complex task requiring additional analysis
on the workflow.

Each participant was required to use LogAssist in three

tasks and avoid using the tool (i.e., using only the raw
logs) in the other three tasks. Each participant was given a
randomized and evenly distributed assignment for which
three tasks that they have access to LogAssist. For each
task performed, we asked the participant to record the
time spent on the task, and their results of performing the
task. We also asked the participants to evaluate whether
LogAssist improves their experience of performing the tasks
over using only the raw logs, using a scale of 1 (strongly
disagree) to 5 (strongly agree). Users were given the option
of including additional qualitative feedback in the form
of unstructured comments. Every task is designed to be
able to be completed with or without using LogAssist. In
practice, sometimes the required information may not be
readily available in a workflow’s compressed form. Thus,
we design three out of the six tasks (i.e., T1, T2, and T3) to
require expanding workflows from their compressed forms
when using LogAssist.
Results. On average, LogAssist reduces the amount of time
needed for the participants to perform the log analysis
tasks by 42%. Table 10 compares, for each task, the average
time needed for the participants to perform the task with
and without LogAssist. In four out of the six tasks, the
time required to perform the task was reduced by 35.59%
to 82.91% with LogAssist. Our results also show that the
tasks that require expanding the workflows do not affect
the effectiveness of LogAssist, as LogAssist can still reduce
the time needed for performing tasks that require such
expansion (e.g., T1 and T2). However, in two of the six tasks,
the required time was increased by 15.04% to 86.32% with
LogAssist. These two tasks are the simplest tasks (i.e., the
participants took the shortest time to perform these two
tasks without using LogAssist), for which LogAssist could
not further simplify. While LogAssist is able to reduce the
amount of time needed for log analysis tasks, there is also
an inherent learning curve that the participants experience
when using a new tool for the first time. In simpler and
shorter tasks, this overhead may become more apparent and
possibly increase the overall task time. Nevertheless, using
LogAssist helped the users to significantly reduce the total
needed time to perform all the assigned tasks by 42.49%.

For each task, we also perform a Wilcoxon rank-sum test
to compare the time taken by the participants to complete
the task with and without the assistance of LogAssist. Due
to the small sample size, only two of the six tasks (T1 and
T6) show a statistically significant reduction in completion



TABLE 10
The average time with, and without LogAssist and the % reduction. The
time values are represented in minutes for each individual task, as well
as the total for all tasks combined.

Avg. time w/o. Avg. time w.  Time Improvement

LogAssist (min)  LogAssist (min) (%)
T1 13.65 3.35 75.46
T2 8.26 5.32 35.59
T3 3.99 4.59 -15.04
T4 6.565 3.98 39.38
T5 2.85 5.31 -86.32
T6 5.56 0.95 8291
Total 40.88 23.51 42.49

time when using LogAssist. However, the result shows a
statistically significant reduction in the overall completion
time of the tasks when using LogAssist (p<0.01).

LogAssist improves the users’ experience of performing
the log analysis tasks. As shown in Figure 3, 18 out
of 19 (94.7%) participants agreed or strongly agreed that
LogAssist effectively improves their log analysis experience,
while only one participant had a neutral opinion on the
helpfulness of the tool. On average, participants assigned
LogAssist a rating of 4.53 out of 5. After speaking with
the participant who had neutral opinion, the participant
indicated that she rated the tool as such due to experiencing
some frustration while performing one task. She assumed
that the task should be simple, but instead found the task
challenging even with the tool, leading her to assume that
she may not have been using the tool in an optimal fashion.
Overall, as LogAssist extracts meaningful workflows from
the raw logs and abstracts the workflows into a concise set
of common event sequences (i.e., unique workflow types),
LogAssist can effectively simplify users’ log analysis tasks.

Generally, the participants found LogAssist to be helpful
and provide benefits over using simply the raw logs. Many
expressed their appreciation of the tool and its capabilities
including automated workflow extraction, insights, visu-
alizations, and the ability to perform some tasks much
more quickly. Some comments by participants seemed to
indicate that they felt that developers needed to be familiar
with the concept of a workflow and be familiar with how
to use the tool in order to get the most from LogAssist.
Similarly, one participant felt it would be helpful to further
highlight the underlying logic behind LogAssist to help users
better understand how to operate it. While we did provide
participants with documentation outlining explanations of
workflows and instructions on how to utilize LogAssist,
we recognize that there is a learning curve not only with
LogAssist, but with log analysis in general. As our study
included participants from varying levels of experience in
log analysis, we expect a similar variation in the learning
curve experienced. We expect that future practitioners who
adopt LogAssist will experience a relatively small learning
curve based on their domain knowledge.

Despite positive feedback and comments outlining the
benefits of LogAssist, some participants did suggest some
additional features and improvements that they felt could
benefit LogAssist. These suggested features and improve-
ments included additional filtering and sorting options, and
bi-directional quick navigation from statistics to workflows.
These suggestions did not highlight an inability to perform
specific tasks but rather, possible ways to further improve
the speed of performing tasks when using LogAssist, and
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Fig. 3. User provided rating for the usefulness of LogAssist.

options to allow users to customize their interface and
experience.

LogAssist provides, on average, a 42% improvement in
log analysis speed when compared to performing the
same analysis on raw logs alone. Participants rated
LogAssist an average of 4.53 out of 5 (95% of the par-
ticipants rate LogAssist as agree or strongly agree) for
improving their experience of performing log analysis.

5 LESSONS LEARNED

Logs are very repetitive, while most of the log information
can be compressed without impacting the usefulness
of logs. Prior research [48], [28], [23] studies approaches
for compressing log data. However, such log compression
approaches usually compress logs into a form that cannot
be analyzed directly (i.e., in a encoded format). In this work,
we propose an approach that compresses logs into a con-
cise form that enables practitioners to conduct log analysis
effectively. Besides, practitioners can expand detailed log
information when needed, which ensures that practitioners
can always find the information that they are interested in,
in a more efficient manner.

Re-organizing logs into meaningful workflows can im-
prove practitioners’ experience of log analysis. Logs are
typically recorded in log files based on when they are gen-
erated during the execution of systems. While log files keep
the time-based order of the log lines, it is difficult for practi-
tioners to examine the logs, as the log lines of one workflow
(e.g., the transaction of checking out a product) are usually
intermixed with the lines of other workflows (e.g., ordering
supplies or browsing). Our approach leverages the grouping
ID information, which is usually available in system logs,
to separate the log lines of different workflows. Hence,
practitioners can focus on a particular workflow that they
are interested in when conducting log analysis (e.g., when
diagnosing the cause of an error).

N-gram models can effectively capture the re-occurring
patterns in the workflows. Software logs are repetitive, not
only in the repetition of the same events, but also in the
repetition of the log sequences [17], [11], [7]. Prior work
uses n-gram models to measure the repetitiveness of log
data [23] or to identify the static parts of a log line [49].
In this work, we find that using n-gram models (after
grouping workflows) can effectively capture such repetition



of log sequences and allow us to leverage the captured
repetition to further compress the logs into a concise form
for log analysis. While our study consisted of only reducing
an n-gram sequence into a single event if the conditional
probabilities of the second event through the nth event
are all 100% (i.e., p(enlel...e,—1) = 1, this probability is
a hyper-parameter that can be explored in future work. The
effects of a threshold analysis which relaxes and strengthens
this probability value would likely open the possibility for
further grouping between similar workflow types, but with
the added risk of grouping workflows that may be perceived
as distinctly different workflow types.

Better tools and support (e.g., a log IDE) are important
for practitioners to improve their experience and effec-
tiveness of log analysis. Existing log analysis tools (e.g.,
Splunk or Elastic) usually support effective log search using
keywords. However, such tools do not help practitioners
analyze the searched log lines in a more organized fashion
(e.g., workflow or recurring log patterns). In this work, we
propose a log IDE, to allow practitioners to search all the
information they need while only presenting a concise form
of information for practitioners to analyze. As indicated
by our user study, such an IDE can significantly improve
practitioners’” experience of performing log analysis tasks.
Future research on log analysis should pay attention to
assisting practitioners using similar tools.

Providing a concise representation of logs while still pro-
viding practitioners the flexibility to access the complete
information in the logs. LogAssist compresses the logs
into a concise form that may simplify practitioners’ log
analysis tasks. However, practitioners may need to access
some detailed log information that is hidden from the
concise form. Therefore, LogAssist also enables practitioners
to search and expand all the information in the original
logs. By providing the ability to view a given workflow in
multiple forms and at different verbosity levels, LogAssist
provides a lossless reduction that is flexible. A practitioner
may expand or collapse any given workflow to suit their
own needs, preferences, and tasks as they see fit, without
losing any information from the original logs. Our user
study demonstrates that such a combination can effectively
improve practitioners’ log analysis experiences.

6 THREATS TO VALIDITY
In this section, we discuss the threats to validity of our study.

External validity. We conducted our experiment on logs
from one enterprise and two open source systems. Although
the log datasets that we use are from large-scale systems in
different domains and are widely used in prior studies [36],
our results may not be generalized to other systems. Fu-
ture studies are needed to verify the effectiveness of our
approach on other systems.

Construct validity. We evaluate our approach by following
a prior study [17]. Namely, we identify keywords that are
related to the most common errors, exceptions, and normal
messages. We then use the keywords to evaluate how much
effort we can reduce when inspecting the search results.
However, the results may not truly represent how much
effort is reduced. To mitigate the threat, we conduct a
user study in RQ3 to further evaluate the effectiveness of
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LogAssist. In our user study, we use time to measure the
effectiveness of LogAssist in assisting practitioners with log
analysis. There may be other metrics that may be used such
as the success rate of finishing the task correctly. Neverthe-
less, we find that LogAssist can also help users finish the
log analysis tasks with a much higher success rate (i.e., 60%
higher than without LogAssist).

In our user study, rather than providing participants
with long and complex tasks, we designed the study to
include several smaller tasks in order to ensure that par-
ticipants of varying backgrounds could complete the tasks
within a relatively short time-frame. Other possible reasons
for the relatively short completion time may include partici-
pants guessing, giving up, or believing they have completed
a task prematurely. With respect to the complexity of the
tasks, even the most complex of tasks are composed of
smaller tasks. Furthermore, a non-complex task may contain
many repetitive simple tasks that collectively become a
time-consuming task. As the logs used in this paper are real-
world logs, we consider the associated tasks to be real-world
tasks, and do not consider the time requirement of the tasks
to directly correlate with the complexity.

In our workload creation step (Section 3.2), we lever-
age a popular algorithm in the signal processing field to
identify gaps between workflows. Although through our
manual investigation and the user study, we did not find
workflows that are incorrectly identified, future studies are
encouraged to compare different algorithms for identifying
gaps between workflows.

7 RELATED WORK

In this section, we discuss related work in three areas: log
analysis, understanding system workflows, and log com-
pression.

Log analysis. Many prior studies focus on using logs to
assist in debugging and understanding system execution.
A common log analysis approach is to group the log lines
using grouping IDs, and then apply machine learning tech-
niques to detect anomalies [7], [38], [39], [11], [31], [37].
Such anomalies may be an indication of the problem that
happened during system execution. For example, Xu et
al. [7] propose an approach to first group log lines using
grouping ID and then apply principal component analysis
to detect anomalies. Jiang et al. [11] groups log lines using
grouping ID and apply z-stat to detect anomalies. Syer et
al. [38], [39] use hierarchical clustering to identify anomalies
in execution logs. Du et al. [37] leverage deep learning
models (i.e.,, LSTM) to detect anomalies in log sequences.
Chen et al. [31] discuss a decade of experience on applying
machine learning techniques to analyze logs to assist load
test analysis. In this work, we also use grouping IDs to
separate log lines into workflows. However, our goal is
not only to detect anomalies, but also to help practitioners
understand and navigate system execution information.

Understanding system workflows. Many prior studies
try to assist practitioners in understanding system work-
flows (e.g., event sequences) to assist in debugging and
test design. Yuan et al. [6] analyze log lines to uncover
system execution paths in the source code. Tan et al. [40]
analyze log lines by using state machines to model system



execution. Chen et al. [50] leverage log lines to analyze
system workflows and recommend where to place caches.
Chen et al. [43] propose approaches to extract representative
workflows from production logs to assist with load test
design at different levels of granularity. Lin et al. [44] use
clustering to identify similar workflows in logs to assist
with workflow comprehension. Workflow understanding
is also very popular in the software industry. Commercial
tools such as Elastic [30] allow practitioners to search log
lines using keywords, and provide different charts (ie.,
dashboard) to visualize the matched log lines. Different
from prior studies, LogAssist aims to provide a more struc-
tured representation for log lines. LogAssist helps reduce the
amount of information that practitioners need to investigate,
and can assist in log analysis tasks.

The closest work to ours is by Shang et al. [17]. While [17]
seeks to solve the issue of finding deployment bugs in big
data applications, LogAssist seeks to summarize logs into
workflows to facilitate log analysis tasks. The difference
in the goals leads to different techniques (as described in
Section 4.2) and their provided benefits. As discussed in
Section 4.2, LogAssist provides a more concise form of logs
than [17]. Furthermore, LogAssist allows for transforming
the logs into a more readable and comprehensible format
where intermixed logs are grouped into relevant workflows.
The transformed logs also provide various representations
by expanding/collapsing portions of the workflow that
allow for even fewer lines to scroll through. LogAssist also
provides statistics on workflows and workflow types (such
as their frequency, workflows sharing the same common
workflow type, and the information about the static and
dynamic components of the log events in the workflows).

Log compression. Prior work [51], [52], [53], [54], [55],
[56], [57], [28] proposes approaches for compressing log
files. These approaches usually compress logs through log
transformation or text replacement. Some research considers
transforming existing log lines in a way to improve the
size of the compressed logs. This line of research leverages
two main approaches for such a transformation, namely log
clustering [54], [55] and log transposing [56]. Prior work
also compresses logs by replacing long and repetitive text
in log files with shorter representations [53], [51], [52], [57],
[28]. For example, Otten et al. [51] transform all timestamps
and IP addresses in a log file to binary representations,
then replace the static tokens in log files (i.e., static words
and phrases) with shorter representations. Recently, Liu et
al. [28] propose a log preprocessing approach (i.e., Logzip)
that extracts log templates from log data and replaces each
template with a shorter representation (e.g., a unique ID).
Yao et al. [23] evaluates the performance of various gen-
eral compression algorithms on log compression. They find
that logs are highly repetitive and highlight the difference
between compressing logs and natural language text. These
approaches transform logs into a compressed form that does
not allow directly performing log analysis without decom-
pression. In this work, we propose an approach to compress
logs into a concise form while allowing practitioners to
access the complete information in the logs on demand,
without a decompression process.
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8 CONCLUSION

In this paper, we present LogAssist, a novel approach for
assisting practitioners with log analysis. LogAssist success-
fully identifies common workflow types by condensing
extracted workflows using consecutive event sequences and
n-gram models. In particular, by evaluating LogAssist on
one enterprise and two open source systems, we find that
LogAssist is able to significantly reduce the amount of log
lines that need to be examined in typical log analysis tasks
and the associated effort. In particular, this paper makes the
following contributions:

o We propose a novel approach that effectively com-
presses raw logs into a concise form that simplifies
practitioners’ log analysis tasks.

o We demonstrate the importance of untangling raw logs
into meaningful event sequences (i.e, workflows) and
use statistical techniques (e.g., n-gram models) to iden-
tify re-occurring patterns of event sequences.

o We share the lessons that we learned from developing
and adopting our approach, which can provide insights
for researchers and practitioners who wish to develop
similar tools to assist log analysis tasks.

REFERENCES

[1] T. Barik, R. DeLine, S. M. Drucker, and D. Fisher, “The bones of
the system: a case study of logging and telemetry at microsoft,” in
Proceedings of the 38th International Conference on Software Engineer-
ing, ICSE 2016, May 14-22, 2016 - Companion Volume, L. K. Dillon,
W. Visser, and L. Williams, Eds., 2016, pp. 92-101.

[2] H.Li, W. Shang, B. Adams, M. Sayagh, and A. E. Hassan, “A qual-
itative study of the benefits and costs of logging from developers’
perspectives,” IEEE Transactions on Software Engineering, pp. 1-1,
2020.

[3] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang,
and T. Xie, “Where do developers log? an empirical study on
logging practices in industry,” in Companion Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 24-33.

[4] Q.Fu,].-G.Lou, Q.Lin, R. Ding, D. Zhang, and T. Xie, “Contextual
analysis of program logs for understanding system behaviors,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories, ser. MSR 13, 2013, pp. 397-400.

[5] “Automated root cause analysis for spark application failures -
o’reilly media,” (Accessed on 08/13/2019).

[6] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“Sherlog: Error diagnosis by connecting clues from run-time logs,”
in Proceedings of the Fifteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS 15th, 2010, pp. 143-154.

[7]1 W.Xu, L. Huang, A. Fox, D. Patterson, and M. . Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceed-
ings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, ser. SOSP ‘09, 2009, pp. 117-132.

[8] W.Xu, L.Huang, A. Fox, D. A. Patterson, and M. I. Jordan, “Online
system problem detection by mining patterns of console logs,” in
ICDM 2009, The Ninth IEEE International Conference on Data Mining,
6-9 December 2009, 2009, pp. 588-597.

[9]1 ]. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from
console logs for system problem detection,” in 2010 USENIX
Annual Technical Conference, June 23-25, 2010, 2010.

[10] Q. Fu,]J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection
in distributed systems through unstructured log analysis,” in
Proceedings of the 9th IEEE International Conference on Data Mining,
ser. ICDM ’09, 2009, pp. 149-158.

[11] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic
identification of load testing problems,” in Proceedings of the 2008
IEEE International Conference on Software Maintenance, ser. ICSM
’08, 2008, pp. 307-316.



(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang,
“Identifying impactful service system problems via log analysis,”
in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2018, 2018, pp. 60-70.

K. Nagaraj, C. E. Killian, and J. Neville, “Structured comparative
analysis of systems logs to diagnose performance problems,” in
Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2012, April 25-27, 2012, 2012, pp.
353-366.

M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The
mystery machine: End-to-end performance analysis of large-scale
internet services,” in 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 14, October 6-8, 2014., 2014, pp.
217-231.

K. Yao, G. B. de Pddua, W. Shang, C. Sporea, A. Toma, and
S. Sajedi, “Logdperf: suggesting and updating logging locations
for web-based systems’ performance monitoring,” Empirical Soft-
ware Engineering, vol. 25, no. 1, pp. 488-531, 2020.

R. Ding, H. Zhou, J. Lou, H. Zhang, Q. Lin, Q. Fu, D. Zhang, and
T. Xie, “Log2: A cost-aware logging mechanism for performance
diagnosis,” in 2015 USENIX Annual Technical Conference, USENIX
ATC "15, July 8-10, S. Lu and E. Riedel, Eds., 2015, pp. 139-150.

W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and
P. Martin, “Assisting developers of big data analytics applications
when deploying on hadoop clouds,” in 2013 35th International
Conference on Software Engineering (ICSE), 2013, pp. 402-411.

A.]. Oliner and ]. Stearley, “What supercomputers say: A study
of five system logs,” in The 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2007, 25-28
June 2007, Proceedings, 2007, pp. 575-584.

B. Schroeder and G. A. Gibson, “Disk failures in the real world:
What does an MTTF of 1, 000, 000 hours mean to you?” in 5th
USENIX Conference on File and Storage Technologies, FAST 2007,
February 13-16, 2007, 2007, pp. 1-16.

J. Cito, P. Leitner, T. Fritz, and H. C. Gall, “The making of cloud
applications: an empirical study on software development for the
cloud,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, August 30 - September 4,
2015, E. D. Nitto, M. Harman, and P. Heymans, Eds., 2015, pp.
393-403.

A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in
log analysis,” Commun. ACM, vol. 55, no. 2, pp. 55-61, Feb. 2012.
P. He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural
language descriptions in software logging statements,” in Proceed-
ings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, ser. ASE 2018, 2018, pp. 178-189.

K. Yao, H. Li, W. Shang, and A. E. Hassan, “A study of the per-
formance of general compressors on log files,” Empirical Software
Engineering, pp. 1-1, 2020.

Y. Li, Z. M. Jiang, H. Li, A. E. Hassan, C. He, R. Huang, Z. Zeng,
M. Wang, and P. Chen, “Predicting node failures in an ultra-
large-scale cloud computing platform: an aiops solution,” ACM
Transactions on Software Engineering and Methodology, 2020.

C. Reiss, ]. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: format + schema,” Google Inc., Technical Report, Nov. 2011,
revised 2014-11-17 for version 2.1. Posted at https:/ /github.com/
google/cluster-data.

P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log
parsing approach with fixed depth tree,” in 2017 IEEE International
Conference on Web Services (ICWS). 1EEE, 2017, pp. 33—40.

Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An au-
tomated approach for abstracting execution logs to execution
events,” Journal of Software Maintenance, vol. 20, no. 4, pp. 249-267,
2008.

J. Liu, J. Zhu, S. He, P. He, Z. Zheng, and M. R. Lyu, “Logzip:
Extracting hidden structures via iterative clustering for execution
log compression,” in Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering. ACM, 2019.
Splunk, “Turn machine data into answers,” https:/ /www.splunk.
com, last accessed May 16 2020.

Elastic, “Elastic,” https://www.elastic.co/, last accessed May 16
2020.

T-H. Chen, M. D. Syer, W. Shang, Z. M. Jiang, A. E. Hassan,
M. Nasser, and P. Flora, “Analytics-driven load testing: An indus-
trial experience report on load testing of large-scale systems,” in
Proceedings of the 39th International Conference on Software Engineer-

(32]

(33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

(50]

14

ing: Software Engineering in Practice Track, ser. ICSE-SEIP 17, 2017,
pp- 243-252.

Z. M. Jiang and A. E. Hassan, “A survey on load testing of large-
scale software systems,” IEEE Transactions on Software Engineering,
vol. 41, no. 11, pp. 1091-1118, 2015.

T. D. LaToza and B. A. Myers, “Developers ask reachability ques-
tions,” in Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering, ser. ICSE 10, 2010, pp. 185-194.

A.R. Chen, T. P. Chen, and S. Wang, “Demystifying the challenges
and benefits of analyzing user-reported logs in bug reports,”
Empirical Software Engineering, vol. 26, no. 1, p. 8, 2021.

A. Chen, T. Chen, and S. Wang, “Pathidea: Improving information
retrieval-based bug localization by re-constructing execution paths
using logs,” IEEE Transactions on Software Engineering, no. 01, pp.
1-1, 2021.

J. Zhu, S. He, ]. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu,
“Tools and benchmarks for automated log parsing,” in Proceedings
of the 41st International Conference on Software Engineering: Software
Engineering in Practice, ser. ICSE-SEIP "19, 2019, pp. 121-130.

M. Du, E Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS 17, 2017, p. 1285-1298.

M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. Nasser,
and P. Flora, “Leveraging performance counters and execution
logs to diagnose memory-related performance issues,” in Proceed-
ings of the 2013 IEEE International Conference on Software Mainte-
nance, ser. ICSM 13, 2013, pp. 110-119.

——, “Continuous validation of load test suites,” in Proceedings of
the 5th ACM/SPEC International Conference on Performance Engineer-
ing, ser. ICPE "14, 2014, pp. 259-270.

J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Salsa:
analyzing logs as state machines,” in Proceedings of the 1st USENIX
conference on Analysis of system logs, ser. WASL'08, 2008, pp. 6-6.

P. Nageswaran, “Method, apparatus and computer program prod-
uct for dynamically managing a thread pool of reusable threads in
a computer system,” Nov. 23 1999, uS Patent 5,991,792.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, ]. Bright,
S.J. van der Walt, M. Brett, ]. Wilson, K. Jarrod Millman, N. May-
orov, A. R. ]J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, I. Polat,
Y. Feng, E. W. Moore, ]. Vand erPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.
Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . .
Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, vol. 17, pp. 261-272, 2020.
J. Chen, W. Shang, A. E. Hassan, Y. Wang, and J. Lin, “An
experience report of generating load tests using log-recovered
workloads at varying granularities of user behaviour,” in Proceed-
ings of the 34th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 19, 2019, p. 669-681.

Q. Lin, H. Zhang, ] .-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Pro-
ceedings of the 38th International Conference on Software Engineering
Companion, ser. ICSE "16, 2016, p. 102-111.

M. Nagappan, K. Wu, and M. A. Vouk, “Efficiently extracting
operational profiles from execution logs using suffix arrays,” in
Proceedings of the 20th IEEE International Conference on Software
Reliability Engineering, ser. ISSRE’09, 2009, pp. 41-50.

A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in
log analysis,” Communications of the ACM, vol. 55, no. 2, pp. 55-61,
2012.

ElasticSearch, “Open-source log storage,” https://www.elastic.
co/products/elasticsearch, last accessed May 16 2020.

A. E. Hassan, D. J. Martin, P. Flora, P. Mansfield, and D. Dietz, “An
industrial case study of customizing operational profiles using log
compression,” in Proceedings of the 30th International Conference on
Software Engineering, ser. ICSE '08, 2008, p. 713-723.

H. Dai, H. Li, W. Shang, T.-H. Chen, and C.-S. Chen, “Logram:
Efficient log parsing using n-gram dictionaries,” arXiv preprint
arXiv:2001.03038, 2020.

T.-H. Chen, W. Shang, A. E. Hassan, M. Nasser, and P. Flora,
“Cacheoptimizer: Helping developers configure caching frame-
works for hibernate-based database-centric web applications,” in
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2016, 2016, p. 666-677.



[51] E J. Otten, “Using semantic knowledge to improve compression
on log files,” Ph.D. dissertation, Rhodes University, 2008.

[52] P. Skibiriski and J. Swacha, “Fast and efficient log file compres-
sion,” in CEUR Workshop Proceedings of the 11th East-European
Conference on Advances in Databases and Information Systems, ser.
ADBIS'07. ACM, 2007, pp. 330-342.

[53] R. Balakrishnan and R. K. Sahoo, “Lossless compression for large
scale cluster logs,” in Proceedings 20th IEEE International Parallel &
Distributed Processing Symposium. 1EEE, 2006, p. 435.

[54] R. Christensen and F. Li, “Adaptive log compression for massive
log data.” in SIGMOD Conference. ACM, 2013, pp. 1283-1284.

[55] B. Feng, C. Wu, and ]. Li, “MLC: an efficient multi-level log
compression method for cloud backup systems,” in 2016 IEEE
Trustcom/BigDataSE/ISPA, August 23-26, 2016, 2016, pp. 1358-1365.

[56] P. Mell and R. E. Harang, “Lightweight packing of log files for
improved compression in mobile tactical networks,” in Military
Communications Conference (MILCOM), 2014 IEEE. IEEE, 2014,
pp. 192-197.

[57] K. Hitonen, J. F. Boulicaut, M. Klemettinen, M. Miettinen, and
C. Masson, “Comprehensive log compression with frequent pat-
terns,” in International Conference on Data Warehousing and Knowl-
edge Discovery. Springer, 2003, pp. 360-370.

Steven Locke Steven Locke is a Master’s stu-
dent in the Department of Computer Science
and Software Engineering at Concordia Univer-
sity, Montreal, Canada, supervised by Dr. Tse-
Hsun (Peter) Chen. His research lies within Soft-
ware Engineering, with special interests in soft-
ware log mining, mining software repositories,
and the application of Al in software engineer-
ing. He obtained his Bachelor of Engineering in
Software Engineering from Concordia University.
Contact him at: s_loc@encs.concordia.ca

Heng Li is an Assistant Professor in the Depart-
ment of Computer Engineering and Software En-
gineering at Polytechnique Montreal, Montreal,
Canada, where he leads the Maintenance, Op-
erations and Observation of Software with intelli-
gencE (MOOSE) lab. He obtained his Ph.D. from
the School of Computing, Queen’s University
(Canada), M.Sc. from Fudan University (China),
and B.Eng. from Sun Yat-sen University (China).
He also worked at Synopsys as a software engi-
neer for two years and worked at BlackBerry as
a software performance engineer for another two years. His research
interests lie within Software Engineering, in particular, software observ-
ability, intelligent operations of software systems, software log mining,
software performance engineering, and mining software repositories.
Contact him at: heng.li@polymtl.ca; https://www.hengli.org.

15

Tse-Hsun (Peter) Chen Tse-Hsun (Peter) Chen
is an Assistant Professor in the Department of
Computer Science and Software Engineering
at Concordia University, Montreal, Canada. He
leads the Software PErformance, Analysis, and
Reliability (SPEAR) Lab, which focuses on con-
ducting research on performance engineering,
program analysis, log analysis, production de-
bugging, and mining software repositories. His
work has been published in flagship conferences
and journals such as ICSE, FSE, TSE, EMSE,
and MSR. He serves regularly as a program committee member of
international conferences in the field of software engineering, such as
ASE, ICSE, ICSME, SANER, and ICPC, and he is a regular reviewer
for software engineering journals such as EMSE and TSE. Dr. Chen
obtained his BSc from the University of British Columbia, and MSc
and PhD from Queen’s University. Besides his academic career, Dr.
Chen also worked as a software performance engineer at BlackBerry
for over four years. Early tools developed by Dr. Chen were integrated
into industrial practice for ensuring the quality of large-scale enterprise
systems. More information at: http://petertsehsun.github.io/.

Weiyi Shang Weiyi Shang is an Associate
Professor and Concordia University Research
Chair in Ultra-large-scale Systems at the De-
partment of Computer Science and Software
Engineering at Concordia University, Montreal.
He has received his Ph.D. and M.Sc. degrees
from Queens University (Canada) and he ob-
tained B.Eng. from Harbin Institute of Technol-
ogy. His research interests include big data soft-
ware engineering, software engineering for ultra-
largescale systems, software log mining, em-
pirical software engineering, and software performance engineering.
His work has been published at premier venues such as ICSE, FSE,
ASE, ICSME, MSR and WCRE, as well as in major journals such as
TSE, EMSE, JSS, JSEP and SCP. His work has won premium awards,
such as SIGSOFT Distinguished paper award at ICSE 2013 and best
paper award at WCRE 2011. His industrial experience includes helping
improve the quality and performance of ultra-large-scale systems in
BlackBerry. Early tools and techniques developed by him are already
integrated into products used by millions of users worldwide. Contact
him at shang@encs.concordia.ca.

Wei Liu Wei Liu received the bachelor’s degree
in computer science and the master's degree
in software engineering from Wuhan University
of Technology, China, in 2012 and 2014, re-
spectively. He is currently a Ph.D student at the
Department of Computer Science and Software
Engineering at Concordia University, Montreal,
Canada. His research interests include software
analysis, testing and performance. Prior to it, he
worked at Alibaba as a software engineer for two
years.




