
Research Interests and Representative Contributions
Heng Li, Assistant Professor

Polytechnique Montreal

heng.li@polymtl.ca

Heng Li's research lies within Software Engineering and Computer Systems, with special

interests in mining software operational data, software log mining, software performance

engineering, monitoring and maintenance of machine learning applications, and mining software

repositories. In particular, Heng Li's research primarily focuses on using program analysis,

natural language processing, statistical analysis, machine learning, and big data techniques to

provide intelligent solutions for software operation challenges (a new emerging area that is

called AIOps). Heng Li has been working collaboratively with companies in the software

industry (e.g., BlackBerry, Alibaba, and ERA Environmental), researching and developing

intelligent approaches to improve the daily maintenance and operations of software and

software-intensive systems. The outcomes of his research have brought practical benefits to the

industry and inspired follow-up research in related areas. Below, I describe my main research

areas and the representative contributions.

1. Understanding and supporting software logging practices

Developers insert logging statements in their source code to monitor the runtime behaviors of

software systems. Logging statements print runtime log messages, which play a critical role in

various operation and maintenance efforts (e.g., anomaly detection and diagnosing field failures).

However, developers typically insert logging statements in an ad hoc manner, which usually

results in fragile logging code, i.e., insufficient logging in some code snippets and excessive

logging in other code snippets. Insufficient logging can significantly increase the difficulty of

diagnosing field failures, while excessive logging can cause performance overhead and hide truly

important information.

In order to understand and support software logging practices, we surveyed software developers

and analyzed software repositories (source code, change history, and issue reports) to understand

the benefits and costs of logging, where developers distribute their logging code, how they

choose the verbosity level for their logging code, and how they maintain their logging code.

Based on the empirical findings, we also proposed automated approaches to support developers'

logging decisions, including where to insert logging code, how to choose the verbosity level, and

when to update logging code. The findings and approaches make valuable contributions towards

improving current logging practices and the quality of logging code.

This line of work has resulted in several papers published in top software engineering journals,

including IEEE Transactions on Software Engineering (TSE) [1] and Empirical Software

Engineering (EMSE) [2-4]. Although these research papers are relatively new (published

between 2017 and 2020), they have received the attention of the software engineering research

community (receiving over 100 citations in total) and inspired later research in related areas.

2. Leveraging monitoring data to support the intelligent operations of software systems

Large-scale software systems usually produce a large amount of operational data. The value of

such operational data is usually underestimated and rarely leveraged by practitioners. On the

other hand, the large size of operational data makes it challenging for practitioners to process.

Therefore, we proposed approaches [5-7] to leverage the rich monitoring data of large-scale

systems to support intelligent operations.

We proposed an approach that automatically tunes the configuration parameters of a software

system to optimize system performance. Our approach leverages the readily available monitoring

data (e.g., logs and metrics) to measure the performance of the system in real-time and then

optimize the configuration parameters based on the measured performance. Our approach can

effectively reduce human intervention on configuration parameter tuning and significantly

improve system performance, which has been successfully adopted in a large-scale software

system at BlackBerry. This research resulted in a paper [5] that was published in the top

conference in the Software Engineering community: The International Conference on Software

Engineering (ICSE).

In addition, in order to reduce the losses from node failures in cloud computing platforms, we

proposed an AI-based solution that predicts node failures before they actually occur. Our

solution leverages readily available alerts and provides actionable suggestions for DevOps

engineers to minimize the impact of node failures by performing preventative actions. Our

solution is already adopted and used in practice to analyze the monitoring data from tens of

thousands of nodes of a cloud computing platform at Alibaba. This work also resulted in a paper

published in the ACM Transactions on Software Engineering and Methodology (TOSEM) [6],

one of the top journals in Software Engineering.

3. Leveraging monitoring data to support performance assurance of software systems

Performance regressions of large-scale software systems often lead to both financial and

reputational losses. In order to detect performance regressions, performance tests are typically

conducted in an in-house (non-production) environment using test suites with predefined

workloads. However, performance testing is usually very expensive as it requires extensive

resources and lasts for an extended period.

We leverage black-box machine learning models to automatically detect performance regressions

using the data from field operations of large-scale software systems. Our approach uses black-

box models to capture the relationship between the performance of a software system (e.g., CPU

usage) under varying workloads and the runtime activities that are recorded in the readily

available logs. Then, our approach compares the black-box models derived from the current

software version with an earlier version to detect performance regressions between these two

versions. Our results show that such black-box models can effectively and timely detect

performance regressions in the field. Our approach can complement or even replace typical in-

house performance testing when testing resources are limited (e.g., in an agile environment). In

addition, we further proposed an approach to automatically locate the root causes of the detected

performance regressions. Our approaches have been adopted in practice to detect and address

performance regressions of a large-scale software system at ERA Environmental Management

Solutions. This line of work led to a paper published in Empirical Software Engineering (EMSE)

[8] and another paper submitted to IEEE Transactions on Software Engineering (TSE), two top

journals in Software Engineering.

4. Supporting log analysis through the automated parsing of log data

As logs are usually very large in size, automated log analysis (e.g., automated anomaly

detection) is needed to assist practitioners in their software operation and maintenance efforts.

Typically, the first step of automated log analysis is log parsing, i.e., converting unstructured raw

logs into structured data. However, log parsing is challenging, because logs are produced by

static templates in the source code (i.e., logging statements) yet the templates are usually

inaccessible when parsing logs. As the volume of logs grows rapidly in the era of cloud

computing, efficiency becomes a major concern in log parsing.

Therefore, we proposed Logram, an automated log parsing approach that leverages n-gram

dictionaries to parse log data in an efficient manner. Logram outperforms the state-of-the-art log

parsing approaches in both accuracy and efficiency. Besides, Logram can effectively support

online parsing (i.e., when logs are continuously generated as a stream) with similar parsing

results and efficiency as the offline mode. Logram can benefit a wide spectrum of future research

and practices that rely on automated log parsing to achieve their log analysis goals. This research

was published in the IEEE Transactions on Software Engineering (TSE) [9], one of the top

journals in Software Engineering. We also filed a patent for Logram that is in process.

5. Monitoring and maintenance of machine learning applications

Like other software applications, monitoring and maintenance of machine learning (ML)

applications are key to ensure the continuous success of ML applications in delivering the

accurate results to users or other applications that rely on such ML services. On the other hand,

monitoring and maintenance of ML applications have its unique challenges, including that one

need to monitor and maintain the data and models in addition to the code. Therefore, this line of

research aims to understand the practices of monitoring and maintaining ML applications and

address the challenges in such practices.

In an initial study [7], we focus on ML applications in the AIOps (Artificial Intelligence for IT

Operations) domain. We observe that AIOps models suffer from concept drift, and periodically

updating AIOps models can help mitigate the impact of such concept drift, while the

performance benefit and the modeling cost of increasing the update frequency depend largely on

the application data and the used models. In a follow-up study [10], we investigated different

approaches for maintaining AIOps models, including leveraging statistical analysis to detect

concept drift and determine when to update the models, time-based ensemble approaches that

combine models trained on smaller time windows, and online learning approaches. We observe

that considering sophisticated model maintenance approaches (e.g., applying concept drift

detection and using time-based ensembles) could provide better performance and efficiency than

simply retraining AIOps models periodically.

References:

[1] H. Li, W. Shang, B. Adams, M. Sayagh, and A. Hassan, “A Qualitative Study of the Benefits and

Costs of Logging from Developers’ Perspectives,” IEEE Transactions on Software Engineering, pp. to

appear, 2020.

[2] H. Li, T.-H. P. Chen, W. Shang, and A. E. Hassan, “Studying software logging using topic

models,” Empirical Software Engineering, vol. 23, no. 5, pp. 2655–2694, 2018.

[3] H. Li, W. Shang, Y. Zou, and A. E. Hassan, “Towards just-in-time suggestions for log

changes,” Empirical Software Engineering, vol. 22, no. 4, pp. 1831–1865, 2017.

[4] H. Li, W. Shang, and A. E. Hassan, “Which log level should developers choose for a new logging

statement?” Empirical Software Engineering, vol. 22, no. 4, pp. 1684–1716, 2017.

[5] H. Li, T.-H. P. Chen, A. E. Hassan, M. Nasser, and P. Flora, “Adopting Autonomic Computing

Capabilities in Existing Large-Scale Systems: An Industrial Experience Report,” in Proceedings of the

40th International Conference on Software Engineering, 2018.

[6] Y. Li, Z. M. Jiang, H. Li, A. E. Hassan, C. He, R. Huang, Z. Zeng, M. Wang, and P. Chen, “Predicting

Node Failures in an Ultra-Large-Scale Cloud Computing Platform: An AIOps Solution,” ACM

Transactions on Software Engineering and Methodology, vol. 29, no. 2, pp. 13:1–13:24, 2020.

[7] Y. Lyu, H. Li, M. Sayagh, Z. M. Jiang, and A. E. Hassan, “An Empirical Study of the Impact of Data

Splitting Decisions on the Performance of AIOps Solutions,” ACM Transactions on Software

Engineering and Methodology, pp. to appear, 2021.

[8] L. Liao, J. Chen, H. Li, Y. Zeng, W. Shang, J. Guo, C. Sporea, A. Toma, and S. Sajedi, “Using Black-

Box Performance Models to Detect Performance Regressions under Varying Workloads: An Empirical

Study,” Empirical Software Engineering, pp. to appear, 2020.

[9] H. Dai, H. Li, C.-S. Chen, W. Shang, and T.-H. Chen, “Logram: Efficient Log Parsing Using n-Gram

Dictionaries,” IEEE Transactions on Software Engineering, pp. to appear, 2020.

[10] Y. Lyu, H. Li, Z. M. Jiang, and A. E. Hassan, “Assessing the maturity of model maintenance

techniques for AIOps solutions,” Under submission.

