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Abstract Large-scale software systems and cloud services continue to pro-
duce a large amount of log data. Such log data is usually preserved for a long
time (e.g., for auditing purposes). General compressors, like the LZ77 com-
pressor used in gzip, are usually used in practice to compress log data to reduce
the cost of long-term storage. However, such general compressors do not con-
sider the unique nature of log data. In this paper, we study the performance
of general compressors on compressing log data relative to their performance
on compressing natural language data. We used 12 widely used general com-
pressors to compress nine log files that are collected based on surveying prior
literature on text compression, log compression and log analysis. We observe
that log data is more repetitive than natural language data, and that log data
can be compressed and decompressed faster with higher compression ratios.
Besides, the compressor with the highest compression ratio for natural lan-
guage data is rarely the one for log data. Nevertheless, the compressors with
the highest compression ratio for log data are rarely adopted in practice by
current logging libraries and log management tools. We also observe that the
peak compression and decompression speeds of general compressors on log
data is often achieved with a small data size, while such size may not be used
by log management tools. Finally, we observe that the optimal compression
performance (measured by a combined compression performance score) of log
data usually requires the compression level to be configured higher than the
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default level. Our findings call for careful consideration of choosing general
compressors and their associated compression levels for log data in practice.
In addition, our findings shed lights on the opportunities for future research
on compressors that better suit the characteristics of log data.

Keywords Log compression · Software logging · Log management · Language
model

1 Introduction

Log data is generated by logging statements that developers place into the
source code for tracing, debugging and failure diagnosis [22, 34, 47, 49, 64,
71, 72]. Log data is usually the only source of information that enables prac-
titioners to understand the field runtime behavior of a system [16, 39, 75, 77].
Besides, log data and their long-term archival are usually required for legal
compliance [33]. As a result, large-scale software systems usually produce large
volumes of log data every day. Such a large volume of data poses challenges
for software practitioners to manage, analyze, and preserve such log data.

In recent years, AIOps (Artificial Intelligence for IT Operations) [55] ap-
proaches have been proposed to assist software practitioners process the large
volumes of log data using data analytics and machine learning techniques [27,
38, 41]. Log data usually needs to be preserved for years to comply with le-
gal regulations [57]. General compressors, like the LZ77 compressor used in
gzip, are typically used nowadays to compress log data to save storage space.
Logging libraries [3, 7, 8] and log management tools (e.g., Splunk [1]) also
use general compressors to compress log data for storage savings. However,
such general compressors may not be optimized for log data. Listing 1 shows
a snippet of log data produced by a software system.

2015-07-29 19:19:04,661-INFO-Received connection request /10.10.34.13:58116
2015-07-29 19:21:36,502-INFO-Received connection request /10.10.34.11:45957
2015-07-29 19:21:36,607-WARN-Interrupted while waiting for message on queue
2015-07-29 19:21:39,846-WARN-Connection broken for id 188978561024, my id= 1
2015-07-29 19:21:39,846-WARN-Interrupting SendWorker
2015-07-29 19:21:43,389-WARN-Interrupting SendWorker
2015-07-29 19:21:46,525-WARN-Connection broken for id 188978561024, my id= 1
2015-07-29 19:21:46,537-WARN-Send worker leaving thread
2015-07-29 19:21:46,728-INFO-Received connection request /10.10.34.13:58303
2015-07-29 19:21:49,960-INFO-Received connection request /10.10.34.12:48096

Listing 1: A snippet of log data.

As shown in Listing 1, each log line contains some fixed components (e.g.,
timestamps and log levels) and a free-form message body. In other words, log
data is semi-structured. Some log lines are produced by the same logging state-
ments in the source code. For example, the first and the second log lines in
Listing 1 are produced by the same logging statement. Such log lines are iden-
tical except for some dynamic components (e.g., the IP addresses). Therefore,
log data is repetitive. However, general compressors may not be designed to
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exploit these characteristics of log data, leading us to question the competence
of general compressors in compressing log data.

In this paper, we study the use of general compressors on log data. We
structured our study along three research questions (RQs) that are motivated
as follows:

RQ1: How well do general compressors compress log data? Log data is usu-
ally compressed and archived before long-time storage. A common practice
of log compression is applying general compressors on log files. However,
because of the diversity of compressors and the various characteristics of
log files, very different compression performance could be achieved for log
compression. Thus, this RQ aims to understand the compression perfor-
mance of general compressors on log data.

RQ2: How much does the size of a log file impact its compression perfor-
mance? Modern log management tools usually split log files into smaller
blocks before compressing each block separately. Different block sizes are
used by different log management tools to split log files. In this RQ, we in-
tend to understand how would the sizes of log files impact the compression
performance of general compressors.

RQ3: How do compression levels impact compression performance? General
compressors usually support configurable compression levels to make trade-
offs between a faster compression/decompression speed and a higher com-
pression ratio. These compressors usually specify a default compression
level, which may not be optimal for log data. Therefore, in this RQ, we
study the impact of compression levels on the performance of general com-
pressors on log data.

In particular, we selected nine log files and a wide range of 12 general com-
pressors for our study. We measured the performance of compressors through
three measures: 1) the compression ratio, 2) the compression speed and 3)
the decompression speed. We find that log data is much more repetitive than
natural language data. Besides, the compressor with the highest compression
ratio for natural language data is usually not the one for log data. Unfortu-
nately, the compressors with the highest compression ratio for log data are
often not the ones that are adopted by logging libraries or log management
tools. More importantly, we find that the peak compression and decompres-
sion speeds of compressors on log data can be achieved with a small size of log
data. As a common practice in log management tools (e.g., Splunk), dividing
log data into small blocks and compressing them separately may not impair
the compression ratio but rather improve the compression and decompression
speeds. Finally, we observe that compression levels impact the compression ra-
tio and the compression speed of log data more than the decompression speed.
The default level is usually not the optimal level (measured by a combined
compression performance score) for log compression.

Our study highlights the performance variances between compressing nat-
ural language and log data. Based on our findings, we encourage practitioners
to find the optimal compressors and configure their compressors accordingly
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for their log data based on their usage scenarios. Our findings provide practi-
tioners the insights of how to optimize the use of general compressors on log
data, and call for future research on customized compression techniques for log
data. For the reproducibility of our work, we also make our source code and
the studied dataset publicly available1. The main contributions of the paper
are as follows:

1) This paper makes a first attempt to understand the performance of general
compressors on log data and the performance variances between compress-
ing natural language and log data.

2) This paper investigates the repetition characteristics (e.g., local repetitive-
ness) of log data. Our findings provide insights for future work to develop
customized compression approaches for log data.

3) This paper studies the impact of log sizes and compression levels on the
performance of compressors on log data. Our findings provide a benchmark
on log compression for both practitioners and researchers.

Paper organization. Section 2 and 3 describe the background and related
work of log compression, respectively. Section 4 describes the experimental
setup of our study. Section 5 present the design of our experiment that is
guided by our three research questions. Section 6 presents our experiment
results that provide answers to our research questions. Section 7 discusses the
potential threats to the validity of our findings. Finally, Section 8 concludes
the paper.

2 Background

In this section, we discuss the background of compressing log data from the
perspectives of log management tools and log rolling.

2.1 Log Management Tools

Log management tools, such as Elasticsearch-Logstash-Kibana (ELK) stack [19]
and Splunk [1], can assist practitioners in the processing and management of
the rapid-growing log data. Log management tools usually support log parsing,
storage, search, analysis, and visualization [5]. In order to save disk space, log
management tools usually compress the stored log data. For example, Splunk
uses gzip to compress the stored data while ELK supports lz4 (for faster
compression and decompression speeds) and deflate (for a higher compression
ratio). In addition, log management tools usually divide the input log data
into small blocks (or slices) and then apply compression on each of the blocks,

1 Our replication package is available using the following link:
https://queensuca-my.sharepoint.com/:f:/g/personal/18ky10_queensu_ca/EuI65h-
YObJOiukTY55RGx4BPX_-bGCgQantRkoMRAE_LA?e=IFhF9E
Password: SAILResearchLogCompression
We will open the access to this package on a GitHub repository when the paper is accepted.
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such that the compressed data could be decompressed and searched quickly
(only the blocks containing the searched keywords need to be decompressed).
For example, Splunk divides the input data into 128KB blocks and compresses
each of them separately [15]. ELK by default splits log data into 16KB blocks.
When a higher compression ratio is preferred, ELK splits log data into 60KB
blocks2.

However, it is not clear whether the compressors and block sizes supported
by log management tools are optimal for the compression of log data. In this
paper, we studied the performance of compressors on log data in choosing
different compressors and block sizes. Our results can provide log management
tool providers and users insights for improving the performance of compressors
in log management tools.

2.2 Log Rolling

Log data usually grows very fast during system runtime [37]. To handle the
fast-growth of log data, modern logging libraries (e.g, logback [7], log4j2 [3] and
slf4j [8]) usually support the continuous archiving of log data, a.k.a., log rolling.
When a log file (e.g., foo.log) reaches a pre-defined size or time-based thresh-
old, log file is automatically renamed (e.g., as foo1.log) and archived. A new
log file with the same name (e.g., foo.log) is created for new log data. Such
a process is called “rolling” or “rotation”. For example, logback [7] supports
log rolling based on a TimeBasedRollingPolicy or a FixedWindowRollingPol-
icy. The TimeBasedRollingPolicy triggers log rolling by time intervals (e.g.,
by day or by month), while the FixedWindowRollingPolicy triggers log rolling
once a log file reaches a pre-defined maximum file size (i.e., the rolling size).
However, it is unclear how rolling sizes impact the performance of compressors
on log data.

In addition, developers can usually configure the rolling policy to automat-
ically compress the rolled log files. Modern logging libraries usually support a
few compressors for compressing the archived log files. For example, log4j only
supports gzip and zip without external dependencies. Logback supports gzip
and zip3 and developers are expecting more alternative compressors4. However,
the impact of using different compressors on the performance of compressing
log data is not clear.

2.3 General Compressors

Logging libraries and log management tools commonly use general compressors
(e.g., the LZ77 compressor used in gzip) when compressing log data. These

2 http://lucene.apache.org/core/7_7_0/core/org/apache/lucene/codecs/lucene50/
Lucene50StoredFieldsFormat.html

3 https://logback.qos.ch/manual/appenders.html
4 https://jira.qos.ch/browse/LOGBACK-783
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general compressors can be classified into three families: dictionary-based com-
pressors, sorting-based compressors, and prediction-based compressors.

– Dictionary-based compressors use a dictionary to store the processed
data and replace repeated occurrences of data with dictionary references.

– Sorting-based compressors use various strategies (e.g., move-to-front)
to sort similar data together to increase the compression ratio.

– Prediction-based compressors use statistical models to predict the next
token according to the context, thereby reducing the bits that are needed
to encode the next token.

The wide usage of general compressors in log management tools and logging
libraries motivates us to study the performance of general compressors on log
data, and to what extent do the sizes of log files impact the compression
performance. Our findings of this paper provide insights for log management
tools and logging libraries to optimize their support for compressing log data.

3 Related Work

Prior work proposes various approaches to pre-process log data before applying
general compressors, in order to improve the performance of compressors on log
data. However, the computational cost of the extra pre-processing step usually
prevents these approaches from being widely adopted in practice [54, 61]. We
categorized these pre-processing approaches into four categories, namely delta
encoding, bucketing, text replacement, and log transposition.

Delta encoding. Based on the observations that adjacent log lines tend to be
similar, prior work proposes approaches to encode log lines using the delta to
their preceding log line [14, 20, 61, 62]. For example, Balakrishnan et al. [14]
propose a pre-processing approach for the system log data of the IBM Blue
Gene/L supercomputer. Their approach compares a given log line with the
previous log line and encodes only the differences, such that the given log line
is encoded in a shorter version if the two log lines are similar. Their approach,
when used together with general compressors, achieves an average of 28.3%
improvement in compression ratio over general compressors.
Bucketing. Prior work clusters similar log lines into the same buckets before
performing log compression [17, 20]. For example, Christensen et al. [17] clus-
ter log messages into multiple buckets based on their textual similarity, then
apply general compressors on these buckets. Their approach improves the com-
pression ratio using gzip by 30% in an experiment of compressing Apache web
server log.
Text replacement. Prior work proposes approaches that replace partic-
ular fields or common words/phrases in log data with shorter representa-
tions [53, 54, 61]. Otten et al. [54] propose a pre-processing approach that
first converts timestamps and IP addresses into a shorter binary representa-
tion (e.g., 4 or 8 bytes for a timestamp; 3 to 11 bytes for an IP address); then
replaces the semantic knowledge (i.e., common words and phrases) in log files
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with unused ASCII characters. Their approach achieves an up to 32% improve-
ment in compression ratio when used together with general compressors.
Log transposition. Prior work proposes approaches that parse each log line
into fields (each field stores individual information like IP address and times-
tamp) and reshape log data such that the similar field values are placed to-
gether [18, 40, 48]. Such pre-processing approaches only work for log data with
a fixed format. Mell et al. [48] propose a packing approach to improve the com-
pression of structured log data. They parse log data into a matrix table where
each log message is a row in the matrix. The matrix table is transposed to
place similar tokens (i.e., the tokens of the same fields) closer to each other.
Their pre-processing approach, when used together with 7zip_lzma, achieves
up to 21% improvement in compression ratio when compressing fixed-format
log data (e.g., Microsoft Windows security log).

These pre-processing approaches usually consider log files of a single for-
mat or a few randomly selected log files, with random sizes. They typically
use one or a few general compressors as benchmarks, without considering the
impact of compression levels on compression performance. To the best of our
knowledge, there exists no prior work that systematically studies how general
compressors perform on log data. In this paper, we performed a comprehensive
study of the performance of using general compressors on log data. Our results
provide a benchmark for future work that aims to improve the performance of
compressors on log data.

4 Experimental Setup

In this section, we present our experiment setup, including the preparation
of our subject data, the selection of subject general compressors, and our
experimental settings.

4.1 Subject Data

Software systems produce various types of log data. Given that there are
so many different software systems (e.g., GitHub hosts millions of software
projects), it is impossible to explore all the types of log data. Therefore, we
focus on the log data that have been made public in prior work for log com-
pression [11, 14, 17, 18, 20, 23, 24, 25, 40, 48, 53, 54, 56, 61, 62] and log
analytics [28, 32, 42, 43, 51, 52, 63, 65, 66, 67, 73, 74, 75, 76, 78]. We fol-
lowed a snowball literature review strategy [70] to find the related work on log
compression and log analysis, in order to obtain a comprehensive view of the
log data that is used in prior studies. We started our search on ACM Digi-
tal Library5, IEEE Xplore Digital Library6 and Springer Link7. To search for

5 https://dl.acm.org/
6 https://ieeexplore.ieee.org/Xplore/home.jsp
7 https://link.springer.com/
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Table 1: Our selected log data and natural language data.

Data File Raw
size(GB)

#Templates Static-
dynamic
ratio*

Description

Log Data

Access log 2 13 0.23 The access log is generated from a Tomcat web server. Similar
access log is used in prior work for log compression. [54]

Firewall log 2.92 11 0.46 The firewall log is used to track firewall activities in an operat-
ing system. The firewall log is used to detect frequent patterns
in log data in prior work [25]

HDFS log 1.6 149 0.66 The HDFS log is generated from a Hadoop cluster. It is used
for log parsing in prior work [78].

Liberty log 30 1034 1.18 The Liberty log is an aggregation of event log data on a su-
percomputer system. It is used for alert detection in previous
studies [51, 52].

Linux sys-
log

1.5 1702 1.27 The Linux syslog is generated from different applications run-
ning on a single machine. It is a centralized collection of log
data from different applications (e.g., mail logs and cron logs).
Syslog is used to analyze compression on log data in prior re-
search [54, 61].

Spark log 2.8 336 1.63 The Spark log is an aggregation of event log data. It contains
log data from the Spark system and it is used in previous
studies on log analysis and pattern extraction [28, 78].

Thunderbird
log

32 6404 2.25 The Thunderbird log is a combination of syslog from different
machines. It is used to evaluate the performance of compres-
sors on large-scale cluster log data in prior work [14, 40].

Spirit log 38 1542 1.93 Similar to the Thunderbird log, Spirit log is also an aggrega-
tion of system log data from the Spirit supercomputer system.
It is used for log analytics such as fault detection in previous
studies [51, 63].

Windows
log

27 1842 0.86 The Windows log is produced by Windows 7’s component
based servicing (CBS), which records component installation
and updating activities. It is used for log parsing in a prior
study [78].

Natural
Language

(NL)
Data

Gutenberg
corpus

1.2 NA NA The Gutenberg corpus is a collection of over 3,000 English
books. The Gutenberg corpus is widely used to evaluate the
performance of a large collection of compressors on text com-
pression in prior work [13, 46]. The Gutenberg corpus is also
compared with software engineering data for their repetitive-
ness [26, 30].

Wiki cor-
pus

3.2 NA NA The Wikipedia corpus is data dump of English articles from
Wikipedia. The Wikipedia corpus is widely used to evaluate
the performance of different compressors on text compression
in prior work [44].

* Static-dynamic ratio is calculated by dividing the size of static information (e.g., log templates) by the size of the dynamic infor-
mation (e.g., parameters in log templates). We leverage a state-of-the-art log abstraction tool [78] to identify the static and dynamic
information from each of the studied 1GB log files.

both prior research on log compression and log analysis, we performed three
queries with keywords “log compression”, “log file compression” and “log anal-
ysis”. As a result of our literature review, we collected 25 log files from prior
research [11, 14, 17, 18, 20, 22, 23, 24, 25, 28, 32, 40, 42, 43, 51, 52, 53, 54, 56,
61, 62, 63, 66, 67, 73, 74, 75, 76, 78].

From the collected log files, we focus on the ones that have a size of at
least 1GB. We did not include smaller log files as we need a fair comparison
among different log files and between log files and natural language corpora
(as mentioned below, we truncated all studied log files and natural language
corpora into the same size of 1 GB). Besides, as log data is printed according
to a time sequence, the log messages in a small-sized log file might only record
the events in a short time slot, which is not sufficient to represent the real
distribution of log messages. As a result, we selected the following nine log
files, i.e., an Access log file, a Firewall log file, a HDFS log file, a Liberty log
file, a Linux syslog file, a Spark log file, a Spirit log file, a Thunderbird log file
and a Windows log file.
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Table 1 presents an overview of our selected log files and the descriptions
of their formats. For each log file, we also measured the number of unique
templates and the ratio between the static and dynamic content, using a state-
of-the-art log parsing tool named Drain [78]. Such information can be useful
for further understanding the characteristics of the studied log files and the
performance of general compressors on these log files. In order to avoid the
bias caused by different log sizes, we truncated each log file from the beginning
so that each has the same size of 1GB.

In addition to log data, we also selected two natural language corpora as
our baseline data: the Gutenberg corpus8 and the Wikipedia corpus9. The
Wikipedia corpus has been used as the subject data for text compression
benchmarks [46]. The Gutenberg corpus is widely used as a baseline to compare
the repetitiveness of software engineering data with [26, 30]. Furthermore,
the Gutenberg corpus is used to evaluate the performance of compressors on
natural language data in prior work [13, 46]. Since the Wikipedia corpus is
stored in XML format, we cleaned the data set by filtering out XML tags
and external links. We also truncated each natural language corpus from the
beginning so that each has the same size of 1GB.

The nine log files and the two natural language files, each with the size of
1GB, are used as the subject data in our experiments.

4.2 Subject General Compressors

In this paper, we considered a wide variety of general compressors in our
experiments. In particular, we selected the general compressors that are used in
two large text compression benchmarks [4, 6]. From each family of compressors
(c.f. Section 2.3), we selected a few representative compressors (e.g., those used
in prior studies). In total, we selected 12 general compressors across the three
families. For each compressor, we chose an implementation that is publicly
available and free to use for our experiments. Table 2 describes the selected
compressors and the corresponding implementations10.

4.3 Experimental Environment

Our experiments were performed on a server running Ubuntu 16.04.5 with 80
cores of Intel Xeon E7-4780 @ 2.4GHz CPU and 504GB total memory. The
server provides an SSD storage of 6.8TB. We installed all the compressors
that are listed in Table 2 and their dependent libraries on the server. We used
psutil11 to monitor the compression and decompression processes, in order to
measure the CPU time spent on compressing and decompressing each file. We

8 https://web.eecs.umich.edu/~lahiri/gutenberg_dataset.html
9 https://dumps.wikimedia.org/enwiki/

10 We also included our used compressor implementations in our replication package.
11 https://github.com/giampaolo/psutil
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Table 2: The selected general compressors in our study.

Family Algorithm Implementation Description

Dictionary-based

LZ77 gzip1 This algorithm replaces repetitive inputs by
referring to the previous occurrences stored in
a dictionary.

LZW compress2 This algorithm encodes data by dynamically
building a dictionary. LZW first creates the
dictionary of 1-byte symbols, then adds the
index of the longest match to the dictionary.

LZ4 lz43 LZ4 has a similar algorithm as LZ77 but it
uses a fixed and byte-oriented encoding. LZ4
features extremely fast compression and de-
compression speeds.

LZMA 7zip_lzma4 LZMA is a variant of LZ77. LZMA features
high compression by using varying dictionary
sizes (up to 4 GB).

LZSS quickLZ5 LZSS is similar to LZ77, except that LZSS ig-
nores encoding a string if the dictionary refer-
ence is not shorter than the string, while LZ77
encodes every input string. LZSS features high
speed rather than high compression ratio.

Sorting-based

SR/MTF sr26 Symbol Ranking, also known as Move To
Front, transforms each symbol in the data and
replace its index in a recently used symbols
stack. The core idea behind this algorithm is
that the recently seen symbols are more likely
to occur again.

BWT bzip27 BWT first sorts each character by context
(put characters with similar context together),
then compress the transformed data by the
order-0 symbol ranking algorithm.

ST szip8 ST is based on a modified BWT algorithm. ST
uses byte-oriented encoding and a blocksort-
based prediction model. BWT performs better
for larger files.

Prediction-based

PPMD 7zip_ppmd4 PPMD is a statistical compression algorithm
based on context modeling and prediction.
PPMD uses an order-n Markov model that
predicts the nth token based on context (i.e.,
prior n− 1th tokens).

DMC ocamyd9 Similar to PPMD, DMC also predicts next to-
kens based on the context. DMC is based on
bit-level predictions, while PPMD is based on
byte-level predictions.

CM zpaq10 CM is based on next-token predictions that
combine two or more statistical models, in or-
der to have a higher prediction accuracy than
single model.

CTW ctw11 CTW is based on bit-level statistical model-
ing. CTW combines the predictions of variable
order Markov models. CTW yields high com-
pression ratio but slow speed in the context of
text compression.

1 https://www.gnu.org/software/gzip/
2 http://manpages.ubuntu.com/manpages/bionic/man1/compress.1.html
3 https://lz4.github.io/lz4/
4 https://www.7-zip.org/
5 http://www.quicklz.com/
6 http://mattmahoney.net/dc/index.html#sr2
7 http://www.bzip.org/
8 http://www.compressconsult.com/szip/
9 http://www.geocities.ws/ocamyd/
10 http://mattmahoney.net/dc/zpaq.html
11 https://web.archive.org/web/20150302190939/http://www.ele.tue.nl/ctw/



A Study of the Performance of General Compressors on Log Files 11

used CPU time instead of elapsed time in order to reduce the noise caused by
other processes running in the same environment.

5 Experimental Design

We study the performance of general compressors on log data along three
research questions. In this section, we present the motivation and our approach
for answering each of the research questions. Before presenting our RQs, we
perform a preliminary analysis of the characteristics of log data.

Preliminary analysis: How repetitive are log and natural language files?

Motivation

Lossless data compression typically exploits repetitive information in the data,
then represents such repetitiveness of data with a lower number of bits [58].
Thus, an understanding of the repetitiveness of the data is of great importance
before evaluating the compression. In the preliminary study, we investigate the
repetitiveness of different log data. In order to have a baseline to compare with,
we also evaluate the repetitiveness of natural language data, similar to prior
research [26, 30].

Approach

We used entropy to measure the repetitiveness of log data. Shannon’s en-
tropy [60] (or entropy) is used to measure the amount of information that is
contained in an information source (e.g., a text file). Entropy is calculated
as H = −

∑n
i=1 p(i)log2p(i), where p(i) is the probability of a possible state

of the information source (i.e., the possibilities of a sequence of characters in
English language [60]). The more random (i.e., less repetitive) the information
source, the higher the entropy value.

Entropy is relative to the model (e.g., n-gram model) that captures the
probability distribution of the information source [30, 60]. We used an n-gram
model to capture the probability distribution of our data. An n-gram model
predicts the probability distribution of the next item in a sequence based on
an order-n Markov model which assumes that the ith item in the sequence can
be predicted from the prior n− 1 items [35]:

p(mi|mi−1,mi−2, ...,mi−n+1) =
count(mi,mi−1,mi−2, ...,mi−n+1)

count(mi−1,mi−2, ...,mi−n+1)
(1)

Based on the n-gram model, the entropy of a sequence of tokens is calculated
as:

H = − 1

N

N∑
i=1

log p(mi|mi−1,mi−2, ...,mi−n+1) (2)
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where N is the number of tokens in the sequence.
Specifically, inspired by prior work [26, 30], we used cross-entropy to mea-

sure the repetitiveness of our data. For each log or natural language file, we
used ten-fold cross-validation to calculate the cross-entropy value: we used
nine folds to train an n-gram model and test the n-gram model on the remain-
ing fold. We repeated the process ten times and calculate the average entropy
value. For each log/natural language data, we calculated the average cross-
entropy value over ten randomly selected 512MB blocks. There might be some
n-gram sequences that appear in the testing data while unseen in the train-
ing data, which would lead to a probability estimation of zero followed by an
infinite entropy value (when p(i) = 0 then log2p(i) = −∞). In order to avoid
such infinite entropy values while still producing entropy values with statisti-
cal rigor, we used a Modified Kneser-Ney smoothing approach [36], which is
proven to achieve robust entropy estimations when dealing with software cor-
pus [26, 30]. In the rest of the paper, we used cross-entropy interchangeably
with entropy.

RQ1: How well do general compressors compress log data?

Motivation

Compressing log data is important in log management. For example, log man-
agement tools such as ELK and Splunk usually compress log data before
storage. When a specific performance measure is more preferred (e.g., when
compression or decompression speed is favored over compression ratio), the
best performing compressor for different measures may be different. However,
there exists no prior work that systematically studies the performance of gen-
eral compressors on log data. Our answers to this research question can assist
software practitioners and logging library/log management tool providers in
choosing appropriate compressors under different usage scenarios.

Approach

Evaluating compression performance.
We evaluated the performance of general compressors on a variety of log

formats. We used our selected compressors to compress/decompress our se-
lected files and measure the corresponding compression/decompression per-
formance. For each compressor, we used the default compression level. We
used the following three measures to evaluate compression performance:

– Compression ratio: the ratio of the size of the original (uncompressed)
data to the size of the compressed data. The compression ratio indicates
how much the size of a file can be reduced by compression.

– Compression speed: the size of the original (uncompressed) data divided
by the compression time. The compression speed shows how fast a piece of
data can be compressed.
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– Decompression speed: the size of the original (uncompressed) data di-
vided by the decompression time. The decompression speed shows how fast
a piece of compressed data can be decompressed.

Using statistical analyses to compare the performance of compres-
sors.

One may not be able to draw a conclusion that one compressor is better
than another from a single run of compression on one instance of subject data,
since the results are likely to be biased by the peculiarity of the data instance.
To reduce the bias and make the results more generalizable, when comparing
different compressors, we randomly selected ten 512MB blocks from each log/-
natural language file and run the compression/decompression experiments for
each block. Then, we used Scott-Knott clustering to group the compressors into
statistically distinct groups based on each performance measure (compression
raito, compression speed, and decompression speed). The Scott-Knott algo-
rithm hierarchically clusters the compressors by statistically measuring the
difference between the performance measures of the compressors [31, 59]. As
a result, two compressors in different groups will have statistically different
compression performance measures, while two compressors within the same
group will not.

RQ2: How much does the size of a log file impact its compression performance?

Motivation

Prior research on text compression finds that files with larger sizes may be
compressed with a higher compression ratio, due to the higher possibility of
having repetitiveness [6]. However, the practitioners in log analysis and log
management favor the contrary, i.e., log data is more suitable to be com-
pressed in smaller sizes in practice. The reason is that retrieving a log line
from compressed log data requires the decompression of half of the data on
average [40]. For log analysis applications that need to retrieve individual log
lines frequently, it is inefficient to compress log data in large sizes and retrieve
information after decompressing the entire data. To improve the efficiency of
retrieving information from compressed log data, the large volume of log data
is often split into smaller blocks and compressed separately. Only the blocks
that contain the retrieved information need to be decompressed. For example,
ELK splits data into 16KB or 60KB blocks and compresses such small blocks
separately. Similarly, Splunk splits data into 128KB blocks. However, it is not
clear whether the small data sizes bring negative impact on the performance
of general compressors. In this research question, we investigate the impact of
the size of a log file on the performance of general compressors.
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Approach

First, we analyzed the impact of the size of a log file on the entropy values, in
order to understand the repetitiveness at varying sizes of log files. We use the
scope of repetition, which is an indicator of how much the block size influences
the repetitiveness, to examine whether the repeated contents are close to each
other in the files. Then, we performed experiments to evaluate the performance
of general compressors on varying sizes of log files. Based on surveying prior
literature on log compression [14, 17, 18, 20, 48, 53, 54, 61], we selected three
widely considered compressors from different compressor families: the LZ77
compressor from the dictionary-based family, the BWT compressor from the
sorting-based family, and the PPMD compressor from the prediction-based
family.
Randomly extracting data with varying sizes.

In order to investigate the impact of log sizes on the performance of general
compressors on log data, we randomly extracted data of different sizes from
our subject data. From each of the 1GB log file, we randomly picked a starting
point in the file and read a data block of a given size (e.g., 128KB) starting
from that random point. We started by extracting the data with 1KB, and
we doubled the size until it reaches 512MB. We ensured that the size from
the randomly picked point to the end of the file is not smaller than the given
data size to be extracted. For each log and natural language data with each
size, we repeated the process ten times to avoid the random bias caused by
using a single data block. We also used the same approach to randomly extract
natural language data with varying sizes. The random sampling process makes
our results more generalizable to the selected data compared to showing the
results on a single data block.
Calculating entropy of varying sizes of data.

For every log and natural language data with each size, we used the ap-
proach discussed in the preliminary analysis to calculate its entropy value. The
entropy values for different sizes of a file can indicate the scope of repetition of
that file. For example, a smaller entropy value for a certain file size indicates
a higher repetitiveness at that file size.
Measuring compression performance for varying sizes of data.

For every log and natural language data with each size, we used the ap-
proach discussed in RQ1 to measure the compression ratio, compression speed,
and decompression speed of the three selected compressors. When evaluating
the CPU time used for compression and decompression, we realized that it
was difficult to capture the precise time taken to compress/decompress small
files (e.g., less than one second). Thus, we repeated the process of compress-
ing/decompressing small files multiple times and measure the total time taken
for these repetitions. Then, we calculated the average time taken for each
repetition. The number of repetitions is determined by Equation 3:

Repetitions = β × log2(
S0

Si
) (3)
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where S0 and Si are the original file size (i.e., 1GB) and the processed file
size, respectively, and β is a coefficient that accounts for the difference of
compression/decompression speed between compressors. For example, as the
speed of the LZ77 compressor is much faster than the BWT compressor and
the PPMD compressor, we set a higher β value for the LZ77 compressor (i.e.,
more repetitions). The intuition is that the files compressed faster need more
repetitions to capture the compression speed.

RQ3: How do compression levels impact compression performance?

Motivation

Modern compressors usually support configurable compression levels (i.e., one
to nine) to make tradeoffs between high compression ratios and fast com-
pression/decompression speed. A higher compression level usually provides a
higher compression ratio but a slower compression speed. A lower compres-
sion level usually provides a faster compression speed but a lower compression
ratio. General compressors usually specify a default compression level, while
the default compression levels may not be optimal for log data. Therefore,
in this research question, we study the impact of compression levels on the
performance of general compressors on log data. Our findings provide practi-
tioners with guidance on choosing a proper compression level of compressors
for better performance. Log management tools and logging libraries providers
can also learn from our findings to improve the performance of their supported
compressors.

Approach

Measuring compression performance under different compression
levels.

General compressors usually support compression levels from one to nine.
A higher compression level usually indicates a higher compression ratio and a
lower compression speed. All the selected compressors support the nine com-
pression levels12. For each file, we randomly chose ten 512MB blocks and use
the three compressors to compress each block separately. The sizes of blocks
before compression are set to be the same. Thus, the size after compression of
each block (higher or lower compression ratio) will only be impacted by chang-
ing compression levels. We repeated our experiments nine times using the nine
different compression levels. The decompression step can automatically recog-
nize the used compression levels of the compressed files. Thus, we did not
configure specific levels for decompression. We measured the compression ra-
tio, compression speed, and decompression speed under different compression
levels.
12 The selected compression tools gzip, bzip2, and 7zip_ppmd implement the nine com-
pression levels of LZ77, BWT, and PPMD, respectively.
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Calculating a combined compression performance score.
Compression levels provide various tradeoffs between compression ratio

and speed. In order to understand the overall performance of our selected
compressors under different levels, we used a combined compression perfor-
mance score [9, 12] that integrates compression ratio and speed. The combined
compression performance score (C_Score) is defined as follows:

C_Score = log10(2

sizex
sizetop

−1

0.1 × timex) (4)

where sizetop represents the smallest compressed data size achieved by vari-
ous levels of a compressor, sizex is the compressed data size achieved by the
current compression level, and timex is the total time spent on compression
and decompression with the current compression level.

6 Experiment Results

In this section, we first present the results of our preliminary analysis. Then,
we present the results of our experiments for answering our three research
questions.

Preliminary analysis: How repetitive are log and natural language files?

Result

Figure 1 shows the average cross-entropy values of the log and natural language
data using a 5-gram model. We measured the entropy values using gram sizes
of one to ten, and we found that the entropy values decrease as the gram
size increases, which is because longer sequences of context information can
usually provide a better estimation of the next token. However, the entropy
values stabilize as the gram size reaches five. Figure 1 shows that the entropy
values of log data (i.e., 0.21 to 0.61 using 5-gram models) are much lower than
the entropy values of natural language data (e.g., 1.37 to 1.71 using 5-gram
models). The lower entropy values from log data validate that log data is much
more repetitive than natural language data. We find that some specific log
data (e.g., HDFS log) may have a relatively higher entropy when compared to
other log data. However, after comparing the number of unique log templates
and the ratio between the static and dynamic contents among the studied log
data, we cannot find a clear relationship between these characteristics and the
entropy values. Therefore, future research may consider other factors to explain
the variance in entropy values of log data. In general, we observe from our
preliminary analysis that log data is highly repetitive, showing a much
lower entropy than natural language data using n-gram models.
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Fig. 1: Cross-entropy of the log and natural language (NL) data of 512M size.
For each file, we calculated the cross-entropy of ten random blocks. The line
inside the box indicates the mean cross-entropy over the ten random blocks.

RQ1: How well do general compressors compress log data?

Result

Figure 2 compares the compression ratio, compression speed, and decompres-
sion speed of different compressors on the selected log and natural language
data. Table 3 shows the results of using Scott-Knott to cluster the compressors
based on their performance. For each compression performance measure (i.e.,
compression ratio, compression speed, and decompression speed), we high-
lighted the top three compressors for each data. General compressors achieve
up to 17.07 to 249.44 compression ratio for different log data. In comparison,
general compressors only achieve up to 4.62 to 5.00 compression ratio for nat-
ural language data. In addition, compressing/decompressing log data is faster
than compressing/decompressing natural language data. The higher compres-
sion ratio and faster compression/decompression speed could be explained by
the higher repetitiveness in log data. Taking the dictionary-based compres-
sors (e.g., LZ77 compressor) as an example, the more repetitive the data, the
smaller the dictionary for storing and retrieving repetitive information, thus
the higher compression ratio and faster compression/decompression speed [50].

Finding 1.1: Log data is compressed faster and gets a higher compres-
sion ratio than natural language data.

As the winner of the Hutter Prize [2, 10], the prediction-based compressor
CM achieves the highest compression ratio for compressing natural language
data (cf. Table 3). However, it may not achieve the best compression ratio
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Fig. 2: Comparison of compression performance (compression ratio, compres-
sion speed, and decompression speed).

for log data. In fact, the compressor with the highest compression ratio varies
across different log data. In particular, the CM compressor achieves the highest
compression ratio for the Windows log, Linux syslog and the Thunderbird
log. The PPMD compressor achieves the highest compression ratio for the
Access log, the HDFS log, the Spark log and the Thunderbird log. The ST
compressor achieves the highest compression ratio for the majority of log data
except for Access log, HDFS log and Windows log. However, neither the
CM, the PPMD nor the ST compressors are adopted in existing
logging libraries or log management tools as their compressors. The
mostly used compressors, i.e., the LZ77 and the LZ4 compressors, are only
ranked 4 to 10 and 5 to 12 in terms of compression ratio, respectively.

Finding 1.2: The compressor with the highest compression ratio for
natural language data (e.g., the CM compressor) is usually not the
one for log data. The compressor with the highest compression ratio
for one log format may not be the one for another log format either.

The compression and decompression speeds of the LZ4 compressor are 6.6
to 8.5 and 1.4 to 2.8 times faster than the most commonly used compressor
LZ77 (based on which gzip is implemented), respectively, while the compres-
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Table 3: Compressors ranks from Scott-Knott clustering. We used shading to
highlight the top three compressors for each file in terms of different compres-
sion performance measures.

Compression
Performance
Measures

FileName LZ77 LZW LZ4 LZMA LZSS SR BWT ST PPMD DMC CM CTW

CompressionRatio

AccessLog 7 8 9 3 8 4 5 4 1 6 2 5
FirewallLog 9 11 12 6 10 2 5 1 3 7 4 8

HDFS 6 8 8 5 8 4 5 3 1 6 2 7
Liberty 4 5 5 3 5 2 3 1 3 4 3 5

LinuxSysLog 5 7 7 3 6 3 3 1 2 4 1 6
Spark 4 5 5 3 5 2 2 1 1 3 2 4
Spirit 5 9 8 4 7 2 4 1 2 5 3 6

Thunderbird 4 7 6 2 5 2 2 1 1 3 1 5
Windows 10 11 11 2 8 6 3 5 4 7 1 9
Gutenberg 8 9 11 4 10 7 5 4 2 6 1 3

Wiki 6 7 8 3 8 5 4 4 2 5 1 2

Average CompressionRatio
Log 6.0 7.9 7.9 3.4 6.9 3.0 3.6 2.0 2.0 5.0 2.1 6.1
NL 7.0 8.0 9.5 3.5 9.0 6.0 4.5 4.0 2.0 5.5 1.0 2.5

CompressionSpeed

AccessLog 3 4 1 8 2 6 8 7 5 9 9 9
FirewallLog 3 4 1 7 2 5 7 6 4 7 7 7

HDFS 3 4 1 9 2 6 8 7 5 9 9 9
Liberty 3 4 1 6 2 5 6 5 4 6 6 6

LinuxSysLog 3 4 1 7 2 5 7 6 4 7 7 7
Spark 3 4 1 6 2 5 6 5 4 6 6 6
Spirit 3 4 1 6 2 5 6 5 4 6 6 6

Thunderbird 3 4 1 6 2 5 6 5 4 6 6 6
Windows 3 5 1 8 2 6 8 7 4 8 8 8
Gutenberg 4 3 1 9 2 6 5 6 7 8 8 9

Wiki 4 3 1 7 2 5 5 5 6 7 7 7

DecompressionSpeed

AccessLog 2 3 1 5 4 6 6 8 7 9 9 9
FirewallLog 3 4 1 4 2 5 6 8 7 9 9 9

HDFS 2 3 1 4 3 5 5 6 6 7 7 7
Liberty 3 3 1 4 2 4 5 7 6 8 8 8

LinuxSysLog 3 4 1 5 2 6 7 9 8 10 10 10
Spark 3 4 1 5 2 6 7 9 8 10 10 10
Spirit 3 4 1 5 2 6 7 8 8 9 9 9

Thunderbird 3 4 1 4 2 5 6 8 7 9 9 9
Windows 4 5 1 3 2 6 7 8 7 9 9 9
Gutenberg 3 2 1 5 4 7 6 7 7 8 8 8

Wiki 3 2 1 5 4 7 6 7 7 8 8 8

sion ratio of the LZ4 compressor is 33.0% to 48.2% smaller. As shown in
Figure 2 and Table 3, in general, the dictionary-based compressors achieve
faster compression and decompression speeds than the sorting-based and the
prediction-based compressors. The top fastest compressors LZ4, LZSS and
LZ77 are all dictionary-based compressors. In particular, as the default com-
pressor of ELK, the LZ4 compressor achieves much faster compression and
decompression speeds than any other compressors (including other dictionary-
based compressors) for both log and natural language data. On the other hand,
all the dictionary-based compressors have rather low compression ratios.

Finding 1.3: Although having low compression ratios, the dictionary-
based compressors achieve the fastest compression and decompression
speeds for log data.

Discussion

Qualitative examination of compression results
As shown in Table 3, the compressors have different compression ratios

on different log data. To further understand the relationship between the pe-
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culiarities of the considered compressors and the corresponding compression
performance, we particularly examine our results in three folds as follows.

1) Some compressors achieve the most different compression ra-
tios between log and natural language data. We find that the compres-
sion ratio of the CTW and SR compressors differs the most between compress-
ing log data and compressing natural language data. The CTW compressor
achieves an average rank of 2.5 in terms of compression ratio for compressing
natural language data, but the average rank drops to 6.1 when compressing
log data. In contrast, the average rank of the SR compressor in terms of com-
pression ratio is 3.0 when compressing log data and it drops to 6.0 when com-
pressing natural language data. The CTW compressor uses the Context Tree
Weighting algorithm to predict and encode the next symbols in the data [69].
The Context Tree Weighting algorithm leverages all preceding symbols as its
context to predict the next symbol. However, compared to natural language
data, log data is usually locally repetitive (see Figure 4 and corresponding dis-
cussions in RQ2). Thus, in contrast to natural language data, using a larger
context for log data may not produce better results than using a smaller con-
text, which explains why CTW achieves a lower rank when compressing log
data than compressing natural language data. The SR compressor is based on
symbol ranking, which converts the data sequence by maintaining the order of
the symbols from the newest to oldest [21]. The idea behind symbol ranking
is that the most recently seen symbols are most likely to re-occur [45]. As
discussed in RQ2, log data is locally repetitive (i.e., the recently seen symbols
are likely to re-occur), the SR compressor tends to achieve a better rank in
compressing log data than compressing natural language data.

2) Some compressors are more stable in compression ratios than
other compressors. Furthermore, we observe that some compressors (e.g.,
CM and PPMD) are more stable in compressing log data than other com-
pressors (e.g., LZ4, LZ77 and LZW ). The PPMD compressor predicts the
next byte based on the longest seen context [45]. This compressor considers
the context within the whole data. While the LZ77 based compressors are
based on a sliding window, which refers to a new character to its previous
occurrence. However, if the distance between those two characters exceeds the
sliding windows size, the previous occurrence is not matched. Compared to
the PPMD compressor, the LZ77 compressor only processes part of the data
sequentially. Thus, the PPMD compressor could achieve a higher compression
ratio and it is more stable than the LZ77 compressor.

3) Some log files can be better compressed than other log files.
From Figure 2, we observe that some log files (e.g., the Windows log, the
Firewall log, the Thunderbird log, and the Liberty log) are usually better
compressed than other log files. In particular, the CM and LZMA compres-
sors achieve extremely high compression ratio on the Windows log (i.e., up to
a compression ratio of 249.33). As shown in Figure 1, these log files have lower
entropy values (i.e., more repetitive) than others. By analyzing the character-
istics of the studied log files (i.e., the number of unique log templates and the
static-dynamic ratios, as shown in Table 1), we did not observe a clear rela-
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tionship between such characteristics and the compression ratios. Thus, the
difference between the compression ratios may be due to some other factors
(e.g., the log templates of the highly compressed log files are relatively more
similar to each other).
The choice of compressors should depend on the usage scenarios.

Our findings and the qualitative analysis above show that there exists no
best compressor for all scenarios. The widely used LZ77 compressor is a good
tradeoff between compression ratio, compression speed, and decompression
speed (cf., Figure 2 and Table 3). However, such a trade-off may not always
be the optimal choice. In fact, due to the variety of compression performance,
the choice of compressors should depend on the specific usage scenarios. In
previous research, Otten et al. [54] summarized four common scenarios when
compressing log data. We discuss the compressors that are most applicable to
each scenario:

1) Collecting log data to a central location for analysis: This sce-
nario prefers a high compression ratio without considering compression and
decompression time. The PPMD compressor could be used to compress log
data. We find that PPMD compressors is slow (e.g., 66.2% to 71.3% slower
than the LZ77 compressor) in compressing natural language data. However,
the PPMD compressor is only 41.5% to 60.6% slower than the LZ77 com-
pressor when compressing log data. In fact, using the PPMD compressor to
compress log data is faster than using the LZ77 compressor to compress natu-
ral language data. For example, the LZ77 compressor has a compression speed
of 13.8MB/s when compressing the Wikipedia data, while the PPMD compres-
sor only has a speed of 3.97MB/s to compress the same data file. However, the
PPMD compressor has a compression speed of 15.64MB/s to 33.33MB/s when
compressing log data, which is even faster than compressing natural language
data using the LZ77 compressor.

2) Real-time monitoring: This scenario features a minimum point-to-
point time usage with fewer resources (e.g., memory, bandwidth) usage. When
log data needs to be compressed and transferred in a timely manner, the com-
pressor with a faster speed and acceptable compression ratio is preferred. In
particular, the LZSS compressor could be used instead of the LZ77 compres-
sor.

3) Quick access (storing it compressed and later decompressing it
for analysis): This scenario prefers high decompression speed over compres-
sion speed. Furthermore, little bandwidth usage (i.e., high compression ratio)
is also preferred in this scenario. For example, when log data is gradually
compressed while being produced over time, the LZMA compressor could be
selected over the LZ77 compressor. The LZMA compressor achieves a proper
decompression speed (ranges from rank 3 to rank 5 at different log data) with
a relatively high compression ratio.

4) Low system-time-usage for compression and decompression:
This scenario features fast compression and decompression speed, while not
considering the performance of compression ratio. The LZ4 achieves the top
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compression speed and decompression speed on all the studied files. Thus, it
is the most applicable compressor for this scenario.
N-gram model-based entropy value cannot capture the compression
limits of log data.

In Figure 3, for each file, we compared the compression ratios of different
compressors with the 5-gram model-based entropy value. We used the 5-gram
model because we observe that the entropy values stabilize after a gram size of
5. Here we converted the compression ratio into the unit of bits per character
(i.e., 1

Compression Ratio ∗ 8 bits/character). N -gram models are widely used to
model natural languages data and to capture the compression limits of natural
language data. However, n-gram models fail to capture the compression limits
of log data. Figure 3 shows that the compressor with the highest compression
ratio can achieve better compression ratios than the entropy values, which
indicates that the compressor with the highest compression ratio can capture
the repetitiveness in log data better than n-gram models. One possible reason
is that the diversity of dynamic information influences the prediction accuracy
of the n-gram model. Although log data is more repetitive, the repetitiveness is
mostly contributed by semantic text inside log data. For example, considering
the logging statement log.info(”ProductID is ” + id), we notice that the
dynamic information id is always followed by the static text. The diverse
value of such dynamic information makes it hard to predict from the prior
static text. Due to such characteristics of log data, the n-gram model may not
accurately estimate the entropy values for log data.

On the other hand, the entropy values and compression ratios are highly
correlated across different files. In fact, the entropy values and the compression
ratios have a Spearman correlation of 0.87. Practitioners may use the entropy
values to estimate the rank of compression ratios of different log data, instead
of actually apply the compression.

Log data is compressed faster than natural language data using general
compressors with a higher compression ratio. The compressor with the
highest compression ratio for natural language data may not be the
one for log data; while the compressor with the highest compression
ratio for log data may not be adopted by logging libraries and log
management tools in practice. Since there exists no compressor that
has the optimal performance in all measures, one should choose optimal
compressors according to their usage scenarios.

RQ2: How much does the size of a log file impact its compression performance?

Result

Figure 4 shows the entropy values of the selected log and natural language
data over varying data sizes. Natural language data has an increasing trend
of repetitiveness (decreasing entropy) when data size increases, which agrees
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Fig. 3: Comparing the compression ratios of different compressors and the 5-
gram model-based entropy values (5-gram). The entropy values and the best
compression ratios have a Spearman correlation of 0.87.

with the prior research finding [6]. Hence, natural language data reaches the
lowest entropy values at large data sizes. On the other hand, log data reaches
the lowest entropy values at the sizes of 16KB to 8MB, then the entropy values
start to increase with larger data sizes. Such results show that log data can
be most repetitive at a certain small data size. The lowest entropy values
with a certain small sizes of log data indicate that log data has stronger local
repetitiveness (i.e., the scope of repetition at small file sizes) and weaker global
repetitiveness (i.e., the scope of repetition at large file sizes). As log entries
are produced by logging statements in the source code, log entries within
a small block are more likely to share the same information (e.g., dynamic
information). Future log compression approaches should consider the local
repetitiveness of log data to improve the performance of compressors on log
data.

In addition, we observe that the access log has a larger scope of repetition
compared to other log data (see Figure 4), which may be explained by the
larger amount of dynamic information in the access log. Dynamic information
is usually not repeated locally; in comparison, the static information in log
data tends to be locally repeated [61].
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Fig. 5: Compression ratio of log and natural language (NL) data at different
block sizes.

Finding 2.1: Log data with a certain small size has the highest repet-
itiveness, i.e., log data has stronger local repetitiveness and weaker
global repetitiveness.
Figure 5 shows that overall, the compression ratio increases as the data size

increases. However, the compression ratio of log data reaches saturation when
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Fig. 6: Compression speed of log and natural language (NL) data at different
block sizes.

log data reaches certain sizes. In particular, the compression ratio of the LZ77
compressor at small-size (e.g., 128KB) blocks already achieves over 81.18%
of the top compression ratio on log data. Having the highest compression
ratio at small data sizes confirms that splitting log data into small blocks and
compressing each block separately may not negatively impact the compression
ratio. However, in contrast to natural language data, the compression ratio of
log data is more sensitive to data sizes. For example, the compression ratio
increases by 1.7 to 26.9 times when the log data size increases from 1KB to
512MB. In comparison, the compression ratio only increases by 0.6 to 1.8 times
for the natural language data. Such results show that, although log data can
have the best compression ratio with a small size, choosing a too small size
to split log data may end up with an extremely low compression ratio. In
particular, one of ELK’s default options is to split log data into 16KB blocks.
Figure 5 shows that the compression ratios at 16KB are only 14.63% to 80.77%
of the top compression ratios.

Finding 2.2: The compression ratio of log data reaches saturation at
small sizes. Practitioners need to optimize the data splitting sizes for
log management tools and the rolling sizes for logging libraries.
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Fig. 7: Decompression speed of log and natural language (NL) data at different
block sizes.

Figure 6 and Figure 7 shows the compression and decompression speeds
of different compressors on the selected log and natural language data with
varying sizes. The compression and decompression speeds of the LZ77 and the
BWT compressors increase as log size increases. The compressors reach their
peak speed at small data sizes, then drops back to and stays at a lower speed
as log size continues to increase. The peak compression and decompression
speeds are much higher than the compression and decompression speeds at
other sizes. For example, as shown in Figure 6 and Figure 7, the LZ77 com-
pressor reaches its peak compression speed at log sizes of 64KB or 128KB and
peak decompression speed at log sizes of 128KB or 256KB for different data, re-
spectively. In comparison, the BWT compressor reaches its peak compression
speed at log sizes of 4KB and 8KB and peak decompression speed at log sizes
of 32KB and 64KB, respectively. The compression and decompression speed
of the LZ77 and the BWT compressors have similar trends on the natural
language data. In comparison, the PPMD compressor reaches its maximum
compression and decompression speeds at much larger log sizes (i.e., 128MB
or larger sizes).
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Finding 2.3: The LZ77 and BWT compressors reach peak compression
and decompression speed at small log sizes (e.g., 128KB), while the
PPMD compressor reaches its fastest compression and decompression
speed on log data of large sizes.

Discussion

Dividing log data into small blocks to optimize compression perfor-
mance.

In this RQ, we observe that: 1) log data is locally repetitive; 2) the com-
pression ratio of log data reaches saturation at small log sizes; 3) for some
compressors (e.g., the LZ77 and the BWT compressors), the compression
and decompression speeds of log data reaches its peak values at small log
sizes. Therefore, depending on the selected log data, the used compressors and
the specific scenarios (e.g., when compression and decompression speeds are
as important as compression ratio), practitioners and log management tool
providers should consider dividing log data into small blocks and compressing
them separately. For example, when using the LZ77 compressor to compress
log data, it could be divided into 128KB blocks and compressed separately.
Dividing log data into 128KB blocks would achieve a good tradeoff between
compression ratio, compression speed, and decompression speed. When com-
pression ratio and decompression speed are more important than compression
speed, log data could be divided into 256KB blocks and compressed sepa-
rately. When using the PPMD compressor, however, dividing log data into
small blocks would not improve compression performance. As discussed in
Section 2.1, Splunk divides log data into 128KB blocks and uses gzip (LZ77 -
based) to compress each log blocks separately. ELK divides log data into 60KB
blocks (when a higher compression ratio is preferred) and uses deflate (LZ77 -
based) to compress each log block separately. However, none of these choices
are optimal. Our findings could provide log management tool providers with
evidence on optimizing the block sizes for the performance of compressors.
For example, log management tools could optimize block sizes based on the
characteristics of compressed log data and the usage scenarios.

The compression performance of log data often reaches saturation
when log size increases to certain small data sizes (e.g., 256KB); while
a too small log file may have an extremely low compression perfor-
mance. Practitioners and log management tool providers should care-
fully choose a small data size for splitting and rolling log data.

RQ3: How do compression levels impact compression performance?

Result

Figure 8 shows the compression ratio, speed, and decompression speed of the
three compressors using different compression levels. Intuitively, the compres-
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Fig. 8: Compression performance at different compression levels (red vertical
lines mark the default compression levels). We used the average compression
performance of ten data blocks of 512M size.

sion ratio should increase as the compression level increases, while the com-
pression speed should decrease as the compression level increases. However, the
decompression speed is impacted by the compression levels less significantly.
For the LZ77 compressor, the compression ratio and compression speed in-
crease up to 60.67% and 276.17% on log data at different compression levels;
while the decompression speed only achieves a maximum of 18.22% increase
on log data among all compression levels.

Finding 3.1: The compression levels have a higher impact on compres-
sion speed and ratio than decompression speed.

Compared to the natural language data, the compression ratio of the log
data is more sensitive to compression level changes; while the compression and
decompression speeds are less sensitively. Hence, increasing the compression
level for the log data may lead to a much higher compression ratio, while
costs less compression and decompression speeds. For example, the compres-
sion ratio of the LZ77 compressor increases 26.10% to 60.67% on the log
data when comparing the highest compression ratio with the lowest compres-
sion ratio using different compression levels; however, the compression ratio
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Table 4: Scott-Knott clustering on compression ratio and score under different
compression levels. We use shading to highlight the top three compression
levels for each file and compressor in terms of compression ratio and combined
compression performance score.

Measures Compressor FileName Level1 Level2 Level3 Level4 Level5 Level6 Level7 Level8 Level9

CompressionRatio

LZ77

AccessLog 9 8 7 6 5 4 3 1 2
FirewallLog 7 8 9 5 6 3 4 2 1

HDFS 9 8 7 6 5 4 3 2 1
Liberty 3 3 3 2 2 1 1 1 1

LinuxSysLog 9 8 7 6 5 4 3 2 1
Spark 3 3 3 2 2 1 1 1 1
Spirit 4 4 4 3 2 1 1 1 1

Thunderbird 9 8 7 6 5 4 3 2 1
Windows 8 7 6 5 4 3 3 2 1
Gutenberg 9 8 7 6 5 4 3 2 1

Wiki 9 8 7 6 5 4 3 2 1

BWT

AccessLog 9 8 7 6 5 4 3 2 1
FirewallLog 9 8 7 6 5 4 1 2 3

HDFS 9 8 7 6 5 4 3 2 1
Liberty 1 1 1 1 1 1 1 1 1

LinuxSysLog 9 8 7 6 5 4 3 2 1
Spark 1 1 1 1 1 1 1 1 1
Spirit 3 2 1 1 1 1 1 1 1

Thunderbird 9 8 7 6 5 4 3 2 1
Gutenberg 9 8 7 6 5 4 3 2 1

Wiki 9 8 7 6 5 4 3 2 1

PPMD

AccessLog 4 4 4 4 1 1 2 2 3
FirewallLog 4 4 4 4 3 3 2 2 1

HDFS 4 4 4 4 1 1 2 2 3
Liberty 3 3 3 3 2 2 1 1 2

LinuxSysLog 4 4 4 4 3 3 1 1 2
Spark 2 2 2 2 1 1 1 1 2
Spirit 3 3 3 3 2 2 1 1 1

Thunderbird 4 4 4 4 3 3 2 2 1
Windows 4 4 4 4 3 3 2 2 1
Gutenberg 4 4 4 4 2 2 3 3 1

Wiki 4 4 4 4 3 3 2 2 1

Score

LZ77

AccessLog 5 4 3 2 1 1 1 1 1
FirewallLog 7 7 8 5 6 3 4 2 1

HDFS 7 6 5 4 2 1 1 3 3
Liberty 6 5 4 3 2 1 1 1 1

LinuxSysLog 7 6 5 4 3 2 1 1 2
Spark 6 5 4 3 2 1 1 1 1
Spirit 7 6 5 4 2 2 1 3 3

Thunderbird 7 6 5 4 3 2 1 1 1
Windows 8 7 6 5 4 3 3 2 1
Gutenberg 5 3 2 1 2 3 4 5 5

Wiki 5 3 2 1 1 2 3 4 4

BWT

AccessLog 9 8 7 6 5 4 3 2 1
FirewallLog 5 4 3 2 1 1 1 1 1

HDFS 6 5 4 3 3 3 2 1 1
Liberty 3 2 1 1 1 1 1 1 2

LinuxSysLog 9 8 7 6 5 4 3 2 1
Spark 4 3 2 1 1 1 1 1 1
Spirit 7 6 5 4 3 2 2 1 1

Thunderbird 9 8 7 6 5 4 3 2 1
Windows 9 8 7 6 5 4 3 2 1
Gutenberg 6 5 4 3 2 2 2 1 1

Wiki 5 4 3 2 2 2 1 1 1

PPMD

AccessLog 4 4 4 4 1 1 2 2 3
FirewallLog 4 4 5 5 1 1 2 2 3

HDFS 4 4 5 5 1 1 2 2 3
Liberty 3 3 3 3 2 2 1 1 3

LinuxSysLog 4 4 4 4 3 3 1 1 2
Spark 2 2 2 2 1 1 1 1 2
Spirit 4 4 4 4 1 1 2 2 3

Thunderbird 3 3 4 4 1 1 1 1 2
Windows 4 4 4 4 3 3 2 2 1
Gutenberg 2 2 1 1 3 4 6 6 5

Wiki 3 3 3 3 1 2 5 5 4

of the LZ77 compressor on natural language data only increases 18.70% to
19.80%. The compression ratio of the BWT and the PPMD compressors on
the log data can increase up to 234.93% and 204.85% using different com-
pression levels, respectively; while the compression ratio of the BWT and the
PPMD compressors only increases up to 16.39% and 17.44% on the natu-
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ral language data. On the contrary, compared to natural language data, the
compression speed of log data is less sensitive to compression level changes.
For example, the compression speed of the LZ77 compressor on natural lan-
guage data increases 3.21 to 4.20 times from the slowest compression level
to the fastest compression level. However, the compression speed of the LZ77
compressor on log data only increases 0.65 to 2.76 times. In particular, com-
pression performance measures may be impacted differently at certain level
changes. As shown in Figure 8, the compression ratio of the PPMD compres-
sor significantly increases as the compression level increases from four to five.
The compression ratio of the Thunderbird log file increases 54.20% when the
compression level of the PPMD compressor increases from four to five, with
only 0.51% and 4.46% difference in compression and decompression speed.
Finding 3.2: Increasing the compression level for log data is more cost-
effective (i.e., higher compression ratio with a lower cost of compression
speed) than natural language data.

Table 4 shows the results of using Scott-Knott clustering to rank the com-
pression levels of each compressor into statistically distinct groups (ranks),
based on their compression ratio and combined compression performance score,
respectively. In Table 4, each row represents the rank of compression ratio or
the combined compression performance score for that specific compressor and
file using different compression levels. For example, combined compression
performance score, LZ77, access log, the number 1 appears five times, which
means that the five corresponding compression levels are at the same rank;
and the number 1 means the score is at the first rank, which is the highest
rank. Practitioners could expect similar combined compression performance
score using any of these five compression levels.

We observe that the highest compression level always achieves the best
compression ratio for natural language data; while the highest compression
level may not achieve the best compression ratio for log data. For example,
the LZ77 compressor reaches the best compression ratio on the access log file
at level eight, the BWT compressor reaches the best compression on the Fire-
wall log file at the level seven, and the PPMD compressor reaches the best
compression on the HDFS log file at level five and level six. Practitioners can-
not naively choose the highest compression level for the highest compression
ratio for log data.

Finding 3.3: The highest compression level always achieves the best
compression ratio for natural language data; while the highest com-
pression level may not achieve the best compression ratio for log data.

Table 4 shows the results of using Scott-Knott clustering to rank the com-
pression levels of each compressor into statistically distinct groups based on
the combined compression performance scores achieved by these compression
levels. For the LZ77 compressor, the compression level seven (i.e., higher than
the default compression level six) achieves the best combined compression per-
formance scores for all log files except the Firewall log file which needs an even
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higher compression level (i.e., level nine) to achieve the best combined com-
pression performance score. In comparison, the LZ77 compressor achieves the
best combined compression performance scores for both natural language data
using a compression level of four (i.e., lower than the default compression level
of six). For the BWT compressor, the default compression level (i.e., the high-
est level) always achieves the best combined compression performance score.
The PPMD compressor achieves the best combined compression performance
scores for log files using compression levels of five to eight, while reaching the
best combined compression performance scores for natural language data us-
ing compression levels of three to five. Therefore, when compressing log data,
practitioners should consider configuring compression levels that are higher
than the default levels.

Finding 3.4: Log compression usually needs a compression level that
is equal to or higher than the default level to achieve an optimal com-
pression performance (based on a combined compression performance
score).

Discussion

Comparing the compression ratio of the default compression level
and compression levels with the highest compression ratio at differ-
ent data sizes.

In RQ2, we observe that the comparison ratio may be impacted by the
sizes of log data. Therefore, we studied the compression levels with the high-
est compression ratio with different data sizes (i.e., from 1KB to 512MB). In
particular, we compared the compression ratio achieved by the default com-
pression level with the best compression ratio achieved by a compressor. We
calculated a relative compression ratio metric, which is the compression ratio
achieved by a compression level divided by the best compression ratio achieved
by all the compression levels:

RelativeCompressionRatiol =
CompressionRatiol

Best compression ratio
(5)

For each file size, we randomly picked ten data blocks of that size and mea-
sure the average compression ratio to calculate the relative compression ratio
metric.

Figure 9 shows the compression ratio achieved by the default compression
levels relative to the best compression ratio (i.e., the relative compression
ratio). For the BWT compressor, the default compression level is the highest,
thus the default compression level always achieves the best compression ratio.
For the LZ77 compressor, the default compression level (i.e., level six) achieves
a significantly smaller relative compression ratio for log data. For the PPMD
compressor, the default compression level (i.e., level five) achieves nearly the
best compression ratio for two of log data (i.e.., the HDFS log and the Access
log data), while having significantly smaller relative compression ratio for the
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Fig. 9: Comparing the compression ratios achieved by the default compression
levels to the best compression ratios.

other log data. The relative compression ratio of the default compression levels
decreases as the size of the log file increases, and such ratio becomes stabilized
at certain log sizes (e.g., around 256 KB for LZ77 ). Therefore, practitioners
should consider configuring compression levels instead of simply using the
default compression levels when compression log data.

As the default compression levels are usually not optimal for com-
pressing log data, practitioners should consider configuring compres-
sion levels (in particular, higher levels) instead of simply using the
default ones.

Finally, we summarize our main findings from answering our research ques-
tions in Table 5.
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Table 5: The main findings of this paper.

How repetitive are log and natural
language files? (Preliminary Analysis)

Implications

Log data is highly repetitive, showing a much lower en-
tropy than natural language data using n-gram models.

The different repetitiveness implies
a potential difference in compression
performance between log data and
natural language data.

How well do general compressors compress log
data?(RQ1)

Implication

1.1 Log data is compressed faster and gets a higher
compression ratio than natural language data.

None of the general compressors are
optimal for all three measures.
Practitioners should find the
optimal compressors for their own
log data (e.g., access log),
considering their own usage
scenarios (e.g., real-time
monitoring).

1.2 The compressor with the highest compression ratio
for natural language data (e.g., the CM compressor) is
usually not the one for log data. The compressor with
the highest compression ratio for one log format may
not be the one for another log format either.
1.3 Although having low compression ratios, the
dictionary-based compressors achieve the fastest com-
pression and decompression speeds for log data.
How much does the size of a log file impact its
compression performance? (RQ2)

Implication

2.1 Log data with a certain small size has the highest
repetitiveness, i.e., log data has stronger local repeti-
tiveness and weaker global repetitiveness.

As log data has a stronger local
repetitiveness and weaker global
repetitivenss, practitioners and log
management tool providers should
carefully choose a small data size
for splitting and rolling log data.

2.2 The compression ratio of log data reaches saturation
at small sizes.
2.3 The LZ77 and BWT compressors reach peak com-
pression and decompression speed at small log sizes
(e.g., 128KB), while the PPMD compressor reaches its
fastest compression and decompression speed on log
data of large sizes.
How do compression levels impact compression
performance? (RQ3)

Implication

3.1 Compression levels have a higher impact on com-
pression speed and ratio than decompression speed.

As the default compression levels
are usually not optimal for log
compression, practitioners should
consider configuring compression
levels (in particular, higher levels)
instead of simply using the default
ones.

3.2 Increasing the compression level for log data is more
cost-effective (i.e., higher compression ratio with lower
cost of compression speed) than natural language data.
3.3 The highest compression level may not achieve the
best compression ratio for log data.
3.4 Log compression usually needs a compression level
that is equal to or higher than the default level to
achieve an optimal compression performance (based on
a combined compression performance score).

7 Threats to Validity

7.1 External Threats

In this paper, we selected nine log data to perform our study on the perfor-
mance of compressors on log data. Our empirical findings may not apply to
other log data that are not covered in our study. Besides, even for log data
produced by the same software system, practitioners may configure the system
to output different log formats (e.g., with or without timestamps). We admit
that it is difficult, if not impossible, to derive general findings that apply to
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all log data produced by software systems. However, based on a comprehen-
sive literature review, our paper covers log data that is used in prior studies,
followed by manual investigation and classification of log data based on their
formats. The formats of our selected log data are also representative of many
other formats of log data found in our investigation. We observe consistent
results for our selected log data (e.g., log data is locally repetitive). Thus, our
findings may apply to a broader range of log data. Practitioners may find it
fruitful to examine the performance of general compressors on their own log
data.

We selected 12 general compressors for our experiments. The findings de-
rived with these compressors may not apply to other compressors. Moreover,
the difference between different implementations of the same compressor may
also impact our experimental results. However, in this paper, we consider
the compressors that are widely adopted by prior text compression bench-
marks [4, 6]. We selected 12 representative compressors across three families
derived from our careful investigation. Although other compressors may have
different compression performance from our selected ones, we believe our gen-
eral findings (e.g., the performance of compressors on log data is sensitive to
log sizes) can still apply to other compressors.

7.2 Internal Threats

In this paper, we used cross-entropy to evaluate the repetitiveness of our sub-
ject data. In particular, we used n-gram models to calculate the cross-entropy
values. n-gram models are widely used to evaluate the entropy of natural
language data and source code [26, 30]. However, n-gram models may not ac-
curately capture the repetitiveness of log data. Other prediction models (e..g,
DNN-based models) may achieve higher accuracy for predicting the next to-
ken in log data. However, as discussed in RQ1, the entropy values calculated
using n-gram models still have a high correlation with the best compression ra-
tios (i.e., a Spearman correlation of 0.96), indicating that n-gram model-based
cross-entropy can still rank the repetitiveness of log data.

7.3 Construct Validity

In this paper, the results of compression performance are measured in our
specific experimental environment. A different computing environment (e.g.,
different CPU speed or different implementations of some dependent libraries)
may impact our experimental results. However, as we use the same experiment
for all our compression experiments, we ensure that the relative compression
performance measured in our compression experiments are consistent.

General compressors usually support various compression configurations
(e.g., compression level, number of threads and memory limitation). In this
paper, we only evaluated the impact of different compression levels on the
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compressors’ performance. Although the compression level is not the only con-
figuration option provided by compressors, it is usually the most important
configuration option that usually impacts many other configuration options si-
multaneously. Future work can adopt our approaches and data to understand
the impact of other configurable options on compressing log data using general
compressors.

We use a state-of-the art log parsing approach [78] to extra the static and
dynamic information from log messages. Such results may not reflect the abso-
lute number of unique templates. Different regular expression statements and
threshold settings could lead to varied granularity of parsing accuracy, which
causes different number of templates and dynamic parameters. Although the
goal of this paper is not to accurately parse log files, examining the compres-
sion results using log files that have a ground truth of static and dynamic
information can further improve the validity of our findings.

7.4 Conclusion Validity

In order to understand the performance of general compressors on log files,
we investigated the relationship between the characteristics (e.g., number of
templates) of the studied log files and the achieved compression ratio of these
log files. However, we did not observe a clear relationship between the charac-
teristics of log files and the corresponding compression ratio. Our observation
does not necessarily mean that the compression ratio is irrelevant to the char-
acteristics of log files. Future research can explore other characteristics of log
files (e.g., the similarity between different log templates) that may impact the
compression ratio.

In order to take into account the random bias in measuring the compression
performance on a randomly selected data block, we use the Scott-Knott test to
rank the general compressors into statistically distinct groups based on their
compression performance. The Scott-Knott test was designed for the division
of an ANOVA experiment treatment means into homogeneous distinct groups,
thus the input data of Scott-Knott is assumed to be normally distributed and
have homogeneous variance [29]. Although the compression performance (i.e.,
the input data to the Scott-Knott test) is measured on randomly selected data
blocks, we cannot guarantee that our compression performance data meets the
assumptions of normality and homogeneity, which may raise a threat to the
validity of our findings. Prior work [68] applies log-transformation on the input
data of Scott-Knott to meet the assumptions. However, prior work [29] also
argues that such a log-transformation cannot lead to the fulfillment of the
assumptions.

8 Conclusions

Implementations of general compressors (e.g., gzip) are usually adopted to
compress log data produced by software systems. However, such general com-
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pressors do not consider the characteristics of log data (e.g., produced by fixed
logging statements in the source code). It is not clear how well such general
compressors perform on log data. This paper performed experiments to under-
stand the characteristics of log data, the performance of general compressors
on log data, and the impact of log sizes and compression levels on the per-
formance of compressors on log data. We observe that log data is much more
repetitive than natural language data, and that the repetitiveness of log data
exhibits small scopes. The compressor with the highest compression ratio for
natural language data may not be the one for log data, and the compressor
with the highest compression ratio for log data may not be adopted by logging
libraries and log management tool providers in practice. We also observe the
important role of log sizes and compression levels in the performance of gen-
eral compressors on log data. In particular, general compressors achieve peak
performance at small sizes of log data. Besides, the default compression level
may not be optimal for compressing log data.

Our findings illustrate the challenges associated with compressing log data
with general compressors, while demonstrating the opportunities for future
research on customized log compression approaches. Our results can provide
practitioners with insight on choosing the optimal log compressors, the sizes of
log data and the levels of compressors based on their usage scenarios. Future
research work on log compression can also learn from our results to improve
the compression of log data by exploiting the characteristics of log data (e.g,
local repetitiveness).
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